Publications by authors named "Brian L Hua"

Crimean-Congo hemorrhagic fever (CCHF) is the most widely distributed tick-borne viral infection in the world. Strikingly, reported mortality rates for CCHF are extremely variable, ranging from 5% to 80% (Whitehouse, 2004). CCHF virus (CCHFV, ) exhibits extensive genomic sequence diversity across strains (Deyde et al.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) infection can result in a severe hemorrhagic syndrome for which there are no antiviral interventions available to date. Certain RNA viruses, such as CCHFV, encode cysteine proteases of the ovarian tumor (OTU) family that antagonize interferon (IFN) production by deconjugating ubiquitin (Ub). The OTU of CCHFV, a negative-strand RNA virus, is dispensable for replication of the viral genome, despite being part of the large viral RNA polymerase.

View Article and Find Full Text PDF

Background: Genomic regions repressed for DNA replication, resulting in either delayed replication in S phase or underreplication in polyploid cells, are thought to be controlled by inhibition of replication origin activation. Studies in Drosophila polytene cells, however, raised the possibility that impeding replication fork progression also plays a major role.

Results: We exploited genomic regions underreplicated (URs) with tissue specificity in Drosophila polytene cells to analyze mechanisms of replication repression.

View Article and Find Full Text PDF

Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types.

View Article and Find Full Text PDF

The mechanisms that underlie metazoan DNA replication initiation, especially the connection between transcription and replication origin activation, are not well understood. To probe the role of transcription in origin activation, we exploited a specific replication origin in Drosophila melanogaster follicle cells, ori62, which coincides with the yellow-g2 transcription unit and exhibits transcription-dependent origin firing. Within a 10-kb genomic fragment that contains ori62 and is sufficient for amplification, RNA-sequencing analysis revealed that all detected RNAs mapped solely to the yellow-g2 gene.

View Article and Find Full Text PDF