Publications by authors named "Brian L Dake"

Objective: Obesity is a global epidemic leading to several comorbidities including diabetes and cardiovascular disease. The hypothesis that the genetic background of the obesity-prone rat (OP) predisposes to physiologic, metabolic, and microvascular dysfunction which is exacerbated by a diet high in saturated fats was tested.

Methods: Male OP and obesity-resistant (OR) rats were fed either a diet containing 10% (chow) or 45% kcal fat (HF) for 42 weeks.

View Article and Find Full Text PDF

Recently a new rat model for type 2 diabetes the Zucker diabetic Sprague-Dawley (ZDSD/Pco) was created. In this study we sought to characterize the development of diabetic neuropathy in ZDSD rats using age-matched Sprague-Dawley rats as a control. Rats were examined at 34 weeks of age 12 weeks after the onset of hyperglycemia in ZDSD rats.

View Article and Find Full Text PDF

Background: Previously, we reported that the "antioxidant" compound "mitoQ" (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates.

Methods And Results: To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells.

View Article and Find Full Text PDF

A fusion protein, FP 6/3, composed of IGF binding protein (IGFBP)-6 and IGFBP-3 was synthesized where the complete sequences of each binding protein were fused together into a single chimeric protein. The orientation of this fusion protein's structure has the N terminus of IGFBP-3 fused to the C terminus of IGFBP-6, leaving the key binding areas of each open. FP 6/3 bound to cells via its IGFBP-3 component and retained the increased affinity for IGF-II via its IGFBP-6 component.

View Article and Find Full Text PDF

Specific binding of IGF-binding protein (IGFBP)-3 was shown to be present in the isolated, beating rat heart. The uptake of perfused (125)I-labeled IGF-I in the beating heart was decreased to 9% by blocking IGF-I binding sites with the IGF-I analog Long R(3) (LR(3)) IGF-I. When LR(3) was perfused with complexes of (125)I-IGF-I.

View Article and Find Full Text PDF