Background: Aberrant activation of mTORC1 is clearly defined in TSC, causing uncontrolled cell growth. While mTORC1 inhibitors show efficacy to stabilise tumour growth in TSC, they are not fully curative. Disease facets of TSC that are not restored with mTOR inhibitors might involve NF-κB.
View Article and Find Full Text PDFCalmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca (Ca1.2), sodium (NaV1.
View Article and Find Full Text PDFCalmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders.
View Article and Find Full Text PDFTherapies with the mechanistic target of rapamycin complex 1 (mTORC1) inhibitors are not fully curative for tuberous sclerosis complex (TSC) patients. Here, we propose that some mTORC1-independent disease facets of TSC involve signaling through redox factor-1 (Ref-1). Ref-1 possesses a redox signaling activity that stimulates the transcriptional activity of STAT3, NF-kB, and HIF-1α, which are involved in inflammation, proliferation, angiogenesis, and hypoxia, respectively.
View Article and Find Full Text PDFCalmodulin (CaM) is a universal calcium (Ca )-binding messenger that regulates many vital cellular events. In cardiac muscle, CaM associates with ryanodine receptor 2 (RyR2) and regulates excitation-contraction coupling. Mutations in human genes CALM1, CALM2, and CALM3 have been associated with life-threatening heart disorders, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia.
View Article and Find Full Text PDFThe most common inherited cardiac disorder, hypertrophic cardiomyopathy (HCM), is characterized by thickening of heart muscle, for which genetic mutations in cardiac myosin-binding protein C3 () gene, is the leading cause. Notably, patients with HCM display a heterogeneous clinical presentation, onset and prognosis. Thus, delineating the molecular mechanisms that explain how disparate variants lead to HCM is essential for correlating the impact of specific genotypes on clinical severity.
View Article and Find Full Text PDFSperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus that evokes intracellular calcium (Ca) oscillations that are essential for the initiation of egg activation during mammalian fertilisation. A recent genetic study reported a male infertility case that was directly associated with a point mutation in the PLCζ C2 domain, where an isoleucine residue had been substituted with a phenylalanine (I489F). Here, we have analysed the effect of this mutation on the Ca oscillation-inducing activity and the biochemical properties of human PLCζ.
View Article and Find Full Text PDFStudy Question: Is it possible to improve clinical visualization of phospholipase C zeta (PLCζ) as a diagnostic marker of sperm oocyte activation capacity and male fertility?
Summary Answer: Poor PLCζ visualization efficacy using current protocols may be due to steric or conformational occlusion of native PLCζ, hindering antibody access, and is significantly enhanced using antigen unmasking/retrieval (AUM) protocols.
What Is Known Already: Mammalian oocyte activation is mediated via a series of intracellular calcium (Ca) oscillations induced by sperm-specific PLCζ. PLCζ represents not only a potential clinical therapeutic in cases of oocyte activation deficiency but also a diagnostic marker of sperm fertility.
Hereditary leukonychia is a rare genetic nail disorder characterized by distinctive whitening of the nail plate of all 20 nails. Hereditary leukonychia may exist as an isolated feature, or in simultaneous occurrence with other cutaneous or systemic pathologies. Associations between hereditary leukonychia and mutations in the gene encoding phospholipase C delta-1 (PLCδ1) have previously been identified.
View Article and Find Full Text PDFSperm-specific phospholipase C-ζ (PLCζ) is widely considered to be the physiological stimulus that triggers intracellular Ca(2+) oscillations and egg activation during mammalian fertilization. Although PLCζ is structurally similar to PLCδ1, it lacks a pleckstrin homology domain, and it remains unclear how PLCζ targets its phosphatidylinositol 4,5-bisphosphate (PIP2) membrane substrate. Recently, the PLCδ1 EF-hand domain was shown to bind to anionic phospholipids through a number of cationic residues, suggesting a potential mechanism for how PLCs might interact with their target membranes.
View Article and Find Full Text PDFCalmodulin (CaM) is a cytoplasmic calcium sensor that interacts with the cardiac ryanodine receptor (RyR2), a large Ca(2+) channel complex that mediates Ca(2+) efflux from the sarcoplasmic reticulum (SR) to activate cardiac muscle contraction. Direct CaM association with RyR2 is an important physiological regulator of cardiac muscle excitation-contraction coupling and defective CaM-RyR2 protein interaction has been reported in cases of heart failure. Recent genetic studies have identified CaM missense mutations in patients with a history of severe cardiac arrhythmogenic disorders that present divergent clinical features, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS) and idiopathic ventricular fibrillation (IVF).
View Article and Find Full Text PDFCalmodulin (CaM) association with the cardiac muscle ryanodine receptor (RyR2) regulates excitation-contraction coupling. Defective CaM-RyR2 interaction is associated with heart failure. A novel CaM mutation (CaM(F90L)) was recently identified in a family with idiopathic ventricular fibrillation (IVF) and early onset sudden cardiac death.
View Article and Find Full Text PDFA sperm-specific phospholipase C-zeta (PLCζ) is believed to play an essential role in oocyte activation during mammalian fertilization. Sperm PLCζ has been shown to trigger a prolonged series of repetitive Ca(2+) transients or oscillations in oocytes that precede activation. This remarkable intracellular Ca(2+) signalling phenomenon is a distinctive characteristic observed during in vitro fertilization by sperm.
View Article and Find Full Text PDFPhospholipase C-zeta (PLCζ) is a sperm-specific protein believed to cause Ca(2+) oscillations and egg activation during mammalian fertilization. PLCζ is very similar to the somatic PLCδ1 isoform but is far more potent in mobilizing Ca(2+) in eggs. To investigate how discrete protein domains contribute to Ca(2+) release, we assessed the function of a series of PLCζ/PLCδ1 chimeras.
View Article and Find Full Text PDFPhospholipase C-zeta (PLCζ) is a strong candidate for the mammalian sperm-derived factor that triggers the Ca(2+) oscillations required for egg activation at fertilization. PLCζ lacks a PH domain, which targets PLCδ1 to the phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) substrate in the plasma membrane. Previous studies failed to detect PLCζ in the plasma membrane, hence the means of PLCζ binding to PtdIns(4,5)P(2) is unclear.
View Article and Find Full Text PDFA male infertility-linked human PLCζ (phospholipase Cζ) mutation introduced into mouse PLCζ completely abolishes both in vitro PIP(2) (phosphatidylinositol 4,5-bisphosphate) hydrolysis activity and the ability to trigger in vivo Ca2+ oscillations in mouse eggs. Wild-type PLCζ initiated a normal pattern of Ca2+ oscillations in eggs in the presence of 10-fold higher mutant PLCζ, suggesting that infertility is not mediated by a dominant-negative mechanism.
View Article and Find Full Text PDFInflammation in patients defined as frail by Fried's phenotypic definition may be related to sarcopenia. This study aimed to investigate inflammation in older patients across different frailty criteria. Frailty status was determined in 110 patients aged over 75 years (mean 83.
View Article and Find Full Text PDFObjectives: Esterases are enzymes of drug metabolism known to be reduced in frail older people and during acute illness. The mechanism for this is unknown. The aim of this study was to examine esterase activity and inflammation in ageing and frailty.
View Article and Find Full Text PDFObjectives: To examine nutritional indices and levels of leptin and inflammatory markers across age and frailty.
Design: Observational study.
Setting: Continuing care wards and a day hospital in Cardiff, South Wales, United Kingdom.