Publications by authors named "Brian Kopec"

Monoclonal antibodies (mAbs) have high binding specificity and affinity, making them attractive for treating brain diseases. However, their effectiveness is limited by poor blood-brain barrier (BBB) penetration and rapid central nervous system (CNS) clearance. Our group identified blood-brain barrier modulator (BBBM) peptides that improved mAb penetration across the BBB into the brain.

View Article and Find Full Text PDF

Although doxorubicin (DOX) is an effective anti-cancer drug with cytotoxicity in a variety of different tumors, its effectiveness in treating glioblastoma multiforme (GBM) is constrained by insufficient penetration across the blood-brain barrier (BBB). In this study, biocompatible magnetic iron oxide nanoparticles (IONPs) stabilized with trimethoxysilylpropyl-ethylenediamine triacetic acid (EDT) were developed as a carrier of DOX for GBM chemotherapy. The DOX-loaded EDT-IONPs (DOX-EDT-IONPs) released DOX within 4 days with the capability of an accelerated release in acidic microenvironments.

View Article and Find Full Text PDF

Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been demonstrated for their potential as a neuroregenerative treatment of Alzheimer's disease (AD). Unfortunately, most proteins cannot be effectively delivered into the brain from the blood stream due to the presence of the blood-brain barrier (BBB). In this study, we delivered BDNF using ADTC5 as BBB modulator (BBBM) into the brains of transgenic APP/PS1 mice, a mouse model for AD.

View Article and Find Full Text PDF

The number of FDA-approved protein drugs (biologics), such as antibodies, antibody-drug conjugates, hormones, and enzymes, continues to grow at a rapid rate; most of these drugs are used to treat diseases of the peripheral body. Unfortunately, most of these biologics cannot be used to treat brain diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), and brain tumors in a noninvasive manner due to their inability to permeate the blood-brain barrier (BBB). Therefore, there is a need to develop an effective method to deliver protein drugs into the brain.

View Article and Find Full Text PDF

Many proteins can be used to treat brain diseases; however, the presence of the blood-brain barrier (BBB) creates an obstacle to delivering them into the brain. Previously, various molecules were delivered through the paracellular pathway of the BBB via its modulation, using ADTC5 and HAV6 peptides. This study goal was to design new cyclic peptides with N-to-C terminal cyclization for better plasma stability and modulation of the BBB.

View Article and Find Full Text PDF

It is very challenging to develop protein drugs for the treatment of brain diseases; this is due to the difficulty in delivering them into the brain because of the blood-brain barrier (BBB). Thus, alternative delivery methods need further exploration for brain delivery of proteins to diagnose and treat brain diseases. Previously, ADTC5 and HAV6 peptides have been shown to enhance the brain delivery of small- and medium-size molecules across the BBB.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) poses a major obstacle by preventing potential therapeutic agents from reaching their intended brain targets at sufficient concentrations. While transient disruption of the BBB has been used to enhance chemotherapeutic efficacy in treating brain tumors, limitations in terms of magnitude and duration of BBB disruption exist. In the present study, the preliminary safety and efficacy profile of HAV6, a peptide that binds to the external domains of cadherin, to transiently open the BBB and improve the delivery of a therapeutic agent, was evaluated in a murine brain tumor model.

View Article and Find Full Text PDF

Peptides have been used as drugs to treat various health conditions, and they are also being developed as diagnostic agents. Due to their receptor selectivity, peptides have recently been utilized for drug delivery to target drug molecules to specific types of cells (i.e.

View Article and Find Full Text PDF

In 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization.

View Article and Find Full Text PDF