Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, remains endemic worldwide ~5 years since the first documented case. Severe COVID-19 is widely considered to be caused by a dysregulated immune response to SARS-CoV-2 within the respiratory tract. Circulating levels of the chemokine CXCL10 are strongly positively associated with poor outcome; however, its precise role in pathogenesis and its suitability as a therapeutic target have remained undefined.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the coronavirus disease 2019 (COVID-19) pandemic, remains endemic worldwide. Circulating levels of the chemokine CXCL10 are strongly positively associated with poor outcome; however, its precise role in SARS-CoV-2 pathogenesis and its suitability as a therapeutic target have remained undefined. Here, we challenged mice genetically deficient in Cxcl10 with a mouse-adapted strain of SARS-CoV-2.
View Article and Find Full Text PDFIntroduction: TAM receptor-mediated efferocytosis plays an important function in immune regulation and may contribute to antigen tolerance in the lungs, a site with continuous cellular turnover and generation of apoptotic cells. Some studies have identified failures in efferocytosis as a common driver of inflammation and tissue destruction in lung diseases. Our study is the first to characterize the function of the TAM receptors, Axl and MerTk, in the innate immune cell compartment, cytokine and chemokine production, as well as the alveolar macrophage (AM) phenotype in different settings in the airways and lung parenchyma.
View Article and Find Full Text PDFTissue-resident macrophages are critical for tissue homeostasis and repair. We previously showed that dermis-resident macrophages produce CCL24 which mediates their interaction with IL-4 eosinophils, required to maintain their M2-like properties in the T1 environment of the Leishmania major infected skin. Here, we show that thymic stromal lymphopoietin (TSLP) and IL-5 type 2 innate lymphoid cells are also required to maintain dermis-resident macrophages and promote infection.
View Article and Find Full Text PDFThe gut comprises the largest body interface with the environment and is continuously exposed to nutrients, food antigens, and commensal microbes, as well as to harmful pathogens. Subsets of both macrophages and dendritic cells (DCs) are present throughout the intestinal tract, where they primarily inhabit the gut-associate lymphoid tissue (GALT), such as Peyer's patches and isolated lymphoid follicles. In addition to their role in taking up and presenting antigens, macrophages and DCs possess extensive functional plasticity and these cells play complementary roles in maintaining immune homeostasis in the gut by preventing aberrant immune responses to harmless antigens and microbes and by promoting host defense against pathogens.
View Article and Find Full Text PDFThe atypical IκB family member Bcl3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in the nucleus, and positively or negatively modulates transcription in a context-dependent manner. In mice lacking Bcl3 globally or specifically in CD11c+ cells, we previously reported that Toxoplasma gondii infection is uniformly fatal and is associated with an impaired Th1 immune response. Since Bcl3 expression in dendritic cells (DC) is pivotal for antigen presentation and since classical DCs (cDC) are major antigen presenting cells, we investigated the role of Bcl3 specifically in cDCs in vivo by crossing Zbtb46 cre mice with Bcl3flx/flx mice.
View Article and Find Full Text PDFMicrobial translocation contributes to persistent inflammation in both treated and untreated HIV infection. Although translocation is due in part to a disintegration of the intestinal epithelial barrier, there is a bias towards the translocation of Proteobacteria. We hypothesized that intestinal epithelial microvesicle cargo differs after HIV infection and contributes to biased translocation.
View Article and Find Full Text PDFInter-individual differences in T helper (Th) cell responses affect susceptibility to infectious, allergic and autoimmune diseases. To identify factors contributing to these response differences, here we analyze in vitro differentiated Th1 cells from 16 inbred mouse strains. Haplotype-based computational genetic analysis indicates that the p53 family protein, p73, affects Th1 differentiation.
View Article and Find Full Text PDFMononuclear phagocytes are a heterogeneous population of leukocytes essential for immune homeostasis that develop tissue-specific functions due to unique transcriptional programs driven by local microenvironmental cues. Single cell RNA sequencing (scRNA-seq) of colonic myeloid cells from specific pathogen free (SPF) and germ-free (GF) C57BL/6 mice revealed extensive heterogeneity of both colon macrophages (MPs) and dendritic cells (DCs). Modeling of developmental pathways combined with inference of gene regulatory networks indicate two major trajectories from common CCR2 precursors resulting in colon MP populations with unique transcription factors and downstream target genes.
View Article and Find Full Text PDFAlterations in the composition of the intestinal microbiota have been associated with development of type 1 diabetes (T1D), but little is known about changes in intestinal homeostasis that contribute to disease pathogenesis. Here, we analyzed oral tolerance induction, components of the intestinal barrier, fecal microbiota, and immune cell phenotypes in non-obese diabetic (NOD) mice during disease progression compared to non-obese diabetes resistant (NOR) mice. NOD mice failed to develop oral tolerance and had defective protective/regulatory mechanisms in the intestinal mucosa, including decreased numbers of goblet cells, diminished mucus production, and lower levels of total and bacteria-bound secretory IgA, as well as an altered IEL profile.
View Article and Find Full Text PDFDespite studies indicating the effects of IL-21 signaling in intestinal inflammation, its roles in intestinal homeostasis and infection are not yet clear. Here, we report potent effects of commensal microbiota on the phenotypic manifestations of IL-21 receptor deficiency. IL-21 is produced highly in the small intestine and appears to be critical for mounting an IgA response against atypical commensals such as segmented filamentous bacteria and Helicobacter, but not to the majority of commensals.
View Article and Find Full Text PDFBackground: Dry eye disease (DED) affects one third of the population worldwide. In prior studies, experimental autoimmune lacrimal keratoconjunctivitis (EALK) induced by desiccating stress in mice has been used as a model of DED. This model is complicated by a requirement for exogenous epithelial cell injury and administration of anticholinergic agents with broad immunologic effects.
View Article and Find Full Text PDFDendritic cells (DCs) have been implicated in the pathogenesis of psoriasis but the roles for specific DC subsets are not well defined. Here we show that DCs are required for psoriasis-like changes in mouse skin induced by the local injection of IL-23. However, Flt3L-dependent DCs and resident Langerhans cells are dispensable for the inflammation.
View Article and Find Full Text PDFType I interferons are a widely expressed family of effector cytokines that promote innate antiviral and antibacterial immunity. Paradoxically, they can also suppress immune responses by driving production of anti-inflammatory cytokines, and dysregulation of these cytokines can contribute to host-mediated immunopathology and disease progression. Recent studies describe their anti-inflammatory role in intestinal inflammation and the locus containing IFNAR, a heterodimeric receptor for the type I interferons has been identified as a susceptibility region for human inflammatory bowel disease.
View Article and Find Full Text PDFWe explored the function of endogenous type I IFNs (IFN-1) in the colon using the T cell adoptive transfer model of colitis. Colon mononuclear phagocytes (MPs) constitutively produced IFN-1 in a Toll/IL-1R domain-containing adapter-inducing IFN-β-dependent manner. Transfer of CD4(+)CD45RB(hi) T cells from wild-type (WT) or IFN-α/β receptor subunit 1 knockout (IFNAR1(-/-)) mice into RAG(-/-) hosts resulted in similar onset and severity of colitis.
View Article and Find Full Text PDFInterleukin-21 (IL-21) has broad actions on T and B cells, but its actions in innate immunity are poorly understood. Here we show that IL-21 induced apoptosis of conventional dendritic cells (cDCs) via STAT3 and Bim, and this was inhibited by granulocyte-macrophage colony-stimulating factor (GM-CSF). ChIP-Seq analysis revealed genome-wide binding competition between GM-CSF-induced STAT5 and IL-21-induced STAT3.
View Article and Find Full Text PDFRotavirus is a major cause of pediatric diarrheal illness worldwide. To explore the role of organized intestinal lymphoid tissues in infection by and immunity to rotavirus, lymphotoxin alpha-deficient (LTα(-/-)) mice that lack Peyer's patches and mesenteric lymph nodes were orally infected with murine rotavirus. Systemic rotavirus was cleared within 10 days in both LTα(-/-) and wild-type mice, and both strains developed early and sustained serum antirotavirus antibody responses.
View Article and Find Full Text PDFCytokine-activated STAT proteins dimerize and bind to high-affinity motifs, and N-terminal domain-mediated oligomerization of dimers allows tetramer formation and binding to low-affinity tandem motifs, but the functions of dimers versus tetramers are unknown. We generated Stat5a-Stat5b double knockin (DKI) N-domain mutant mice in which STAT5 proteins form dimers but not tetramers, identified cytokine-regulated genes whose expression required STAT5 tetramers, and defined dimer versus tetramer consensus motifs. Whereas Stat5-deficient mice exhibited perinatal lethality, DKI mice were viable; thus, STAT5 dimers were sufficient for survival.
View Article and Find Full Text PDFDendritic cells (DCs) and macrophages (MPs) are important for immunological homeostasis in the colon. We found that F4/80(hi)CX3CR1(hi) (CD11b(+)CD103(-)) cells account for 80% of mouse colonic lamina propria MHC-II(hi) cells. Both CD11c(+) and CD11c(-) cells within this population were identified as MPs based on multiple criteria, including an MP transcriptome revealed by microarray analysis.
View Article and Find Full Text PDFAdjuvant plays an important role in increasing and directing vaccine-induced immune responses. In a previous study, we found that a mucosal SIV vaccine using a combination of IL-15 and TLR agonists as adjuvant mediated partial protection against SIVmac251 rectal challenge, whereas neither IL-15 nor TLR agonists alone as an adjuvant impacted the plasma viral loads. In this study, dissociation of CD4(+) T cell preservation with viral loads was observed in the animals vaccinated with adjuvants.
View Article and Find Full Text PDFRationale: The chemokine receptor Ccr6 is a G-protein-coupled receptor expressed on various types of leukocytes identified in mouse atherosclerotic lesions. Recent evidence suggests that both CCR6 and its ligand CCL20 are also present in human atheroma; however, their functional roles in atherogenesis remain undefined.
Objective: Our objective was to delineate the role of Ccr6 in atherogenesis in the apolipoprotein E-deficient (ApoE(-/-)) mouse model of atherosclerosis.
West Nile virus (WNV) is a re-emerging pathogen responsible for outbreaks of fatal meningoencephalitis in humans. Previous studies have suggested a protective role for monocytes in a mouse model of WNV infection, but the molecular mechanisms have remained unclear. In this study, we show that genetic deficiency in Ccr2, a chemokine receptor on Ly6c(hi) inflammatory monocytes and other leukocyte subtypes, markedly increases mortality due to WNV encephalitis in C57BL/6 mice; this was associated with a large and selective reduction of Ly6c(hi) monocyte accumulation in the brain.
View Article and Find Full Text PDF