Publications by authors named "Brian K Ryu"

Colloidal gelation is used to form processable soft solids from a wide range of functional materials. Although multiple gelation routes are known to create gels of different types, the microscopic processes during gelation that differentiate them remain murky. A fundamental question is how the thermodynamic quench influences the microscopic driving forces of gelation, and determines the threshold or minimal conditions where gels form.

View Article and Find Full Text PDF

Modulating the interaction potential between colloids suspended in a fluid can trigger equilibrium phase transitions as well as the formation of non-equilibrium "arrested states," such as gels and glasses. Faithful representation of such interactions is essential for using simulation to interrogate the microscopic details of non-equilibrium behavior and for extrapolating observations to new regions of phase space that are difficult to explore in experiments. Although the extended law of corresponding states predicts equilibrium phases for systems with short-ranged interactions, it proves inadequate for equilibrium predictions of systems with longer-ranged interactions and for predicting non-equilibrium phenomena in systems with either short- or long-ranged interactions.

View Article and Find Full Text PDF

We investigate how the aspect ratio of micropillar or microwell arrays patterned on a surface affects the rolling and slipping motion of spheres under flooded conditions at low Reynolds numbers. We study arrays of rigid microstructures with aspect ratios varying over two orders of magnitude for surface coverages ranging from 0.04 to 0.

View Article and Find Full Text PDF

Microstructured surfaces, such as those inspired by nature, mediate surface interactions and are actively sought after to control wetting, adhesion, and friction. In particular, the rolling motion of spheres on microstructured surfaces in fluid environments is important for the transport of particles in microfluidic devices or in tribology. Here, we characterize the motion of smooth silicon nitride spheres (diameters 3-5 mm) as they roll down inclined planes decorated with hexagonal arrays of microwells and micropillars.

View Article and Find Full Text PDF