The Type VI Secretion System (T6SS) is a widespread and highly effective mechanism of microbial warfare; it confers the ability to efficiently kill susceptible cells within close proximity. Due to its large physical size, complexity, and ballistic basis for intoxication, it has widely been assumed to incur significant growth costs in the absence of improved competitive outcomes. In this study, we precisely examine the fitness costs of constitutive T6SS firing in the bacterium .
View Article and Find Full Text PDFPLoS Comput Biol
January 2024
Surface attached communities of microbes grow in a wide variety of environments. Often, the size of these microbial community is constrained by their physical surroundings. However, little is known about how size constraints of a colony impact the outcome of microbial competitions.
View Article and Find Full Text PDFThe Type VI Secretion System (T6SS) is a nano-harpoon used by many bacteria to inject toxins into neighboring cells. While much is understood about mechanisms of T6SS-mediated toxicity, less is known about the ways that competitors can defend themselves against this attack, especially in the absence of their own T6SS. Here we subjected eight replicate populations of to T6SS attack by .
View Article and Find Full Text PDFThe Hawaiian bobtail squid's Vibrio fischeri symbionts use quorum sensing for both bioluminescence and to modulate antagonism. New research finds quorum sensing unexpectedly represses V. fischeri's type 6 secretion system, highlighting intricate connections between cooperative and competitive microbial behaviors.
View Article and Find Full Text PDFDuring the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics.
View Article and Find Full Text PDFMutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes and other organisms to new niches. Comparative genomics can be used to infer rewiring of regulatory architecture based on large effect mutations like loss or acquisition of transcription factors but may be insufficient to identify small changes in noncoding, intergenic DNA sequence of regulatory elements that drive phenotypic divergence. In human-derived Vibrio cholerae, the response to distinct chemical cues triggers production of multiple transcription factors that can regulate the type VI secretion system (T6), a broadly distributed weapon for interbacterial competition.
View Article and Find Full Text PDFVibrio cholerae is an aquatic Gram-negative bacterium that causes severe diarrheal cholera disease when ingested by humans. To eliminate competitor cells in both the external environment and inside hosts, V. cholerae uses the type VI secretion system (T6SS).
View Article and Find Full Text PDFEvolutionary arms races are broadly prevalent among organisms including bacteria, which have evolved defensive strategies against various attackers. A common microbial aggression mechanism is the type VI secretion system (T6SS), a contact-dependent bacterial weapon used to deliver toxic effector proteins into adjacent target cells. Sibling cells constitutively express immunity proteins that neutralize effectors.
View Article and Find Full Text PDFBacterial communities are governed by a wide variety of social interactions, some of which are antagonistic with potential significance for bacterial warfare. Several antagonistic mechanisms, such as killing via the type VI secretion system (T6SS), require killer cells to directly contact target cells. The T6SS is hypothesized to be a highly potent weapon, capable of facilitating the invasion and defence of bacterial populations.
View Article and Find Full Text PDFVibrio cholerae, the causative agent of cholera, is commonly isolated, along with other bacterial species, from chironomid insects (Diptera: Chironomidae). Nevertheless, its prevalence in the chironomid egg masses' microbiota is less than 0.5%.
View Article and Find Full Text PDFEnviron Microbiol
October 2020
Background: Like many bacteria, Vibrio cholerae deploys a harpoon-like type VI secretion system (T6SS) to compete against other microbes in environmental and host settings. The T6SS punctures adjacent cells and delivers toxic effector proteins that are harmless to bacteria carrying cognate immunity factors. Only four effector/immunity pairs encoded on one large and three auxiliary gene clusters have been characterized from largely clonal, patient-derived strains of V.
View Article and Find Full Text PDFThe 6th American Society for Microbiology Conference on Cell-Cell Communication in Bacteria convened from 16 to 19 October 2017 in Athens, GA. In this minireview, we highlight some of the research presented at that meeting that addresses central questions emerging in the field, including the following questions. How are cell-cell communication circuits designed to generate responses? Where are bacteria communicating? Finally, why are bacteria engaging in such behaviors?
View Article and Find Full Text PDFHost-associated microbiota help defend against bacterial pathogens; however, the mechanisms by which pathogens overcome this defense remain largely unknown. We developed a zebrafish model and used live imaging to directly study how the human pathogen invades the intestine. The gut microbiota of fish monocolonized by symbiotic strain was displaced by expressing its type VI secretion system (T6SS), a syringe-like apparatus that deploys effector proteins into target cells.
View Article and Find Full Text PDFUnlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system.
View Article and Find Full Text PDFHorizontal gene transfer (HGT) can have profound effects on bacterial evolution by allowing individuals to rapidly acquire adaptive traits that shape their strategies for competition. One strategy for intermicrobial antagonism often used by is the genetically encoded contact-dependent type VI secretion system (T6SS), a weapon used to kill heteroclonal neighbors by direct injection of toxic effectors. Here, we experimentally demonstrate that can acquire new T6SS effector genes via horizontal transfer and utilize them to kill neighboring cells.
View Article and Find Full Text PDFBy nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations.
View Article and Find Full Text PDFThe human pathogen Vibrio cholerae employs several adaptive mechanisms for environmental persistence, including natural transformation and type VI secretion, creating a reservoir for the spread of disease. Here, we report whole-genome sequences of 26 diverse V. cholerae isolates, significantly increasing the sequence diversity of publicly available V.
View Article and Find Full Text PDFThe bacterial pathogen Vibrio cholerae can occupy both the human gut and aquatic reservoirs, where it may colonize chitinous surfaces that induce the expression of factors for three phenotypes: chitin utilization, DNA uptake by natural transformation, and contact-dependent bacterial killing via a type VI secretion system (T6SS). In this study, we surveyed a diverse set of 53 isolates from different geographic locales collected over the past century from human clinical and environmental specimens for each phenotype outlined above. The set included pandemic isolates of serogroup O1, as well as several serogroup O139 and non-O1/non-O139 strains.
View Article and Find Full Text PDFThe facultative pathogen Vibrio cholerae transitions between its human host and aquatic reservoirs where it colonizes chitinous surfaces. Growth on chitin induces expression of chitin utilization genes, genes involved in DNA uptake by natural transformation, and a type VI secretion system that allows contact-dependent killing of neighboring bacteria. We have previously shown that the transcription factor CytR, thought to primarily regulate the pyrimidine nucleoside scavenging response, is required for natural competence in V.
View Article and Find Full Text PDFMany Gram-positive and Gram-negative bacteria can become naturally competent to take up extracellular DNA from the environment via a dedicated uptake apparatus. The genetic material that is acquired can (i) be used for nutrients, (ii) aid in genome repair, and (iii) promote horizontal gene transfer when incorporated onto the genome by homologous recombination, the process of "transformation." Recent studies have identified multiple environmental cues sufficient to induce natural transformation in Vibrio cholerae and several other Vibrio species.
View Article and Find Full Text PDFBiosensors exploiting communication within genetically engineered bacteria are becoming increasingly important for monitoring environmental changes. Currently, there are a variety of mathematical models for understanding and predicting how genetically engineered bacteria respond to molecular stimuli in these environments, but as sensors have miniaturized towards microfluidics and are subjected to complex time-varying inputs, the shortcomings of these models have become apparent. The effects of microfluidic environments such as low oxygen concentration, increased biofilm encapsulation, diffusion limited molecular distribution, and higher population densities strongly affect rate constants for gene expression not accounted for in previous models.
View Article and Find Full Text PDFMany bacteria can become naturally competent to take up extracellular DNA across their outer and inner membranes by a dedicated competence apparatus. Whereas some studies show that the DNA delivered to the cytoplasm may be used for genome repair or for nutrition, it can also be recombined onto the chromosome by homologous recombination: a process called natural transformation. Along with conjugation and transduction, natural transformation represents a mechanism for horizontal transfer of genetic material, e.
View Article and Find Full Text PDFPredictive models are beneficial tools for researchers to use in prioritizing nanoparticles (NPs) for toxicological tests, but experimental evaluation can be time-consuming and expensive, and thus, priority should be given to tests that identify the NPs most likely to be harmful. For characterization of NPs, the physical binding of NPs to DNA molecules is important to measure, as interference with DNA function may be one cause of toxicity. Here, we determined the interaction energy between 12 types of NPs and DNA based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) model and then predicted the affinity of the NPs for DNA.
View Article and Find Full Text PDF