Front Aging Neurosci
December 2022
Despite many pharmacological and surgical treatments addressing the symptoms of Parkinson's disease, there are no approved treatments that slow disease progression. Genetic discoveries in the last 20 years have increased our understanding of the molecular contributors to Parkinson's pathophysiology, uncovered many druggable targets and pathways, and increased investment in treatments that might slow or stop the disease process. Longitudinal, observational studies are dissecting Parkinson's disease heterogeneity and illuminating the importance of molecularly defined subtypes more likely to respond to targeted interventions.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a neurodegenerative disease with an often complex component identifiable by genome-wide association studies. The most recent large-scale PD genome-wide association studies have identified more than 90 independent risk variants for PD risk and progression across more than 80 genomic regions. One major challenge in current genomics is the identification of the causal gene(s) and variant(s) at each genome-wide association study locus.
View Article and Find Full Text PDFSince 2005, The Michael J. Fox Foundation for Parkinson's Research (MJFF) has invested significant funding and non-funding effort to accelerate research and drug development activity around the Parkinson disease (PD)-associated protein LRRK2. MJFF has spearheaded multiple public/private pre-competitive collaborations that have contributed to our understanding of LRRK2 function; de-risked potential safety questions around the therapeutic use of LRRK2 kinase inhibitors; and generated critical research tools, biosamples, and data for the field.
View Article and Find Full Text PDFThe role of mitochondria in Parkinson's disease (PD) has been investigated since the 1980s and is gaining attention with recent advances in PD genetics research. Mutations in and PTEN-Induced Putative Kinase 1 () are well-established causes of autosomal recessive early-onset PD. Genetic and biochemical studies have revealed that PINK1 and Parkin proteins function together in the same biological pathway to govern mitochondrial quality control.
View Article and Find Full Text PDFMutations in Park8, encoding for the multidomain Leucine-rich repeat kinase 2 (LRRK2) protein, comprise the predominant genetic cause of Parkinson's disease (PD). G2019S, the most common amino acid substitution activates the kinase two- to threefold. This has motivated the development of LRRK2 kinase inhibitors; however, poor consensus on physiological LRRK2 substrates has hampered clinical development of such therapeutics.
View Article and Find Full Text PDFInhibition of the kinase activity of leucine-rich repeat kinase 2 (LRRK2) is under investigation as a possible treatment for Parkinson's disease. However, there is no clinical validation as yet, and the safety implications of targeting LRRK2 kinase activity are not well understood. We evaluated the potential safety risks by comparing human and mouse LRRK2 mRNA tissue expression, by analyzing a Lrrk2 knockout mouse model, and by testing selective brain-penetrating LRRK2 kinase inhibitors in multiple species.
View Article and Find Full Text PDFRecessively inherited loss-of-function mutations in the PTEN-induced putative kinase 1(Pink1), DJ-1 (Park7) and Parkin (Park2) genes are linked to familial cases of early-onset Parkinson's disease (PD). As part of its strategy to provide more tools for the research community, The Michael J. Fox Foundation for Parkinson's Research (MJFF) funded the generation of novel rat models with targeted disruption ofPink1, DJ-1 or Parkin genes and determined if the loss of these proteins would result in a progressive PD-like phenotype.
View Article and Find Full Text PDFThe objective of this study was to evaluate the pathology time course of the LRRK2 knockout rat model of Parkinson's disease at 1-, 2-, 4-, 8-, 12-, and 16-months of age. The evaluation consisted of histopathology and ultrastructure examination of selected organs, including the kidneys, lungs, spleen, heart, and liver, as well as hematology, serum, and urine analysis. The LRRK2 knockout rat, starting at 2-months of age, displayed abnormal kidney staining patterns and/or morphologic changes that were associated with higher serum phosphorous, creatinine, cholesterol, and sorbitol dehydrogenase, and lower serum sodium and chloride compared to the LRRK2 wild-type rat.
View Article and Find Full Text PDFProgress in Parkinson's disease (PD) research and therapeutic development is hindered by many challenges, including a need for robust preclinical animal models. Limited availability of these tools is due to technical hurdles, patent issues, licensing restrictions and the high costs associated with generating and distributing these animal models. Furthermore, the lack of standardization of phenotypic characterization and use of varying methodologies has made it difficult to compare outcome measures across laboratories.
View Article and Find Full Text PDFBackground: A genome-wide association study identified 13 single-nucleotide polymorphisms (SNPs) significantly associated with Parkinson's disease. Small-scale replication studies were largely non-confirmatory, but a meta-analysis that included data from the original study could not exclude all SNP associations, leaving relevance of several markers uncertain.
Methods: Investigators from three Michael J Fox Foundation for Parkinson's Research-funded genetics consortia-comprising 14 teams-contributed DNA samples from 5526 patients with Parkinson's disease and 6682 controls, which were genotyped for the 13 SNPs.
The development of a neuroprotective or neuroregenerative therapy for Parkinson's disease (PD) would be a major therapeutic advance. Unfortunately, results from a recent controlled clinical study delivering the neurotrophic factor, glial-derived neurotrophic factor (GDNF), directly into brain did not demonstrate efficacy and safety of such a treatment. A critical review of available data suggests that there are questions that need to be answered before the future of GDNF as a therapy for PD can be determined.
View Article and Find Full Text PDF