Purpose: A physiologically based pharmacokinetic (PBPK) model for fedratinib was updated and revalidated to bridge a gap between the observed drug-drug interaction (DDI) of a single sub-efficacious dose in healthy participants and the potential DDI in patients with cancer at steady state. The study aimed to establish an appropriate dose for fedratinib in patients coadministered with dual CYP3A4 and CYP2C19 inhibitors, providing quantitative evidence to inform dosing guidance.
Methods: The original minimal PBPK model was developed using Simcyp Simulator v17.
A permeability-limited physiologically based pharmacokinetic (PBPK) model featuring four subcompartments (corresponding to the intracellular and extracellular water of the tissue, the residual plasma, and blood cells) for each tissue has been developed in MATLAB/SimBiology and applied to various what-if scenario simulations. This model allowed us to explore the complex interplay of passive permeability, metabolism in tissue or residual blood, active uptake or efflux transporters, and different dosing routes (intravenous (IV) or oral (PO)) in determining the dynamics of the tissue/plasma partition coefficient (Kp) and volume of distribution (Vd) within a realistic pseudo-steady state. Based on the modeling exercise, the permeability, metabolism, and transporters demonstrated significant effects on the dynamics of the Kp and Vd for IV bolus administration and PO fast absorption, but these effects were not as pronounced for IV infusion or PO slow absorption.
View Article and Find Full Text PDF