Inflammation promotes solid tumor progression, but how regulatory mechanisms of inflammation may affect leukemia is less well studied. Using annexin A5 (ANXA5), a calcium-binding protein known for apoptosis, which we discovered to be differentially expressed in the bone marrow microenvironment (BMM) of mice with acute myeloid (AML) vs chronic myeloid leukemia, as a model system, we unravel here a circuit in which AML-derived tumor necrosis factor α (TNF-α) dose-dependently reduces ANXA5 in the BMM. This creates an inflammatory BMM via elevated levels of prostaglandin E2 (PGE2).
View Article and Find Full Text PDFCML is readily treatable with tyrosine kinase inhibitors (TKIs); however, resistance occurs, with the disease curable in only ∼15%-20% of patients. Using integrated functional genomics, Adnan Awad et al. identify agents effective against CML stem cells and describe mechanisms underlying TKI resistance.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles.
View Article and Find Full Text PDFLeukaemia stem cells (LSCs) are the critical seed for the growth of haematological malignancies, driving the clonal expansion that enables disease initiation, relapse and often resistance. Specifically, they display inherent phenotypic and epigenetic plasticity resulting in complex heterogenic diseases. In this review, we discuss the key principles of deregulation of epigenetic processes that shape this disease evolution.
View Article and Find Full Text PDFHaematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa] and response to [eCa] differ between leukaemias. CaSR influences the location of MLL-AF9 acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9 AML versus BCR-ABL1 leukaemias.
View Article and Find Full Text PDFCellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis.
View Article and Find Full Text PDFResistance to standard and novel therapies remains the main obstacle to cure in acute myeloid leukaemia (AML) and is often driven by metabolic adaptations which are therapeutically actionable. Here we identify inhibition of mannose-6-phosphate isomerase (MPI), the first enzyme in the mannose metabolism pathway, as a sensitizer to both cytarabine and FLT3 inhibitors across multiple AML models. Mechanistically, we identify a connection between mannose metabolism and fatty acid metabolism, that is mediated via preferential activation of the ATF6 arm of the unfolded protein response (UPR).
View Article and Find Full Text PDFHOXA9 is commonly upregulated in acute myeloid leukemia (AML), in which it confers a poor prognosis. Characterizing the protein interactome of endogenous HOXA9 in human AML, we identified a chromatin complex of HOXA9 with the nuclear matrix attachment protein SAFB. SAFB perturbation phenocopied HOXA9 knockout to decrease AML proliferation, increase differentiation and apoptosis in vitro, and prolong survival in vivo.
View Article and Find Full Text PDFSeveral studies have documented aberrant RNA editing patterns across multiple tumors across large patient cohorts from The Cancer Genome Atlas (TCGA). However, studies on understanding the role of RNA editing in acute myeloid leukemia (AML) have been limited to smaller sample sizes. Using high throughput transcriptomic data from the TCGA, we demonstrated higher levels of editing as a predictor of poor outcome within the AML patient samples.
View Article and Find Full Text PDFPurpose: Molibresib is a selective, small molecule inhibitor of the bromodomain and extra-terminal (BET) protein family. This was an open-label, two-part, Phase I/II study investigating molibresib monotherapy for the treatment of hematological malignancies (NCT01943851).
Patients And Methods: Part 1 (dose escalation) determined the recommended Phase 2 dose (RP2D) of molibresib in patients with acute myeloid leukemia (AML), Non-Hodgkin lymphoma (NHL), or multiple myeloma.
Recurrent gene mutations often cooperate in a predefined stepwise and synergistic manner to alter global transcription, through directly or indirectly remodeling epigenetic landscape on linear and three-dimensional (3D) scales. Here, we present a multiomics data integration approach to investigate the impact of gene mutational synergy on transcription, chromatin states, and 3D chromatin organization in a murine leukemia model. This protocol provides an executable framework to study epigenetic remodeling induced by cooperating gene mutations and to identify the critical regulatory network involved.
View Article and Find Full Text PDFClinical recommendations for Acute Myeloid Leukemia (AML) classification and risk-stratification remain heavily reliant on cytogenetic findings at diagnosis, which are present in <50% of patients. Using comprehensive molecular profiling data from 3,653 patients we characterize and validate 16 molecular classes describing 100% of AML patients. Each class represents diverse biological AML subgroups, and is associated with distinct clinical presentation, likelihood of response to induction chemotherapy, risk of relapse and death over time.
View Article and Find Full Text PDFMutations in multiple cancers may synergize to alter the cellular epigenetic and transcriptional state and corrupt key signaling pathways. In this issue of , Pedicona illustrate how the two processes intersect to regulate cellular differentiation in acute myeloid leukemia (AML) and show how inhibition of epigenetic regulators promotes sensitivity to kinase inhibitors.
View Article and Find Full Text PDFBACKGROUND: Atherosclerosis is a chronic inflammatory disease of the artery wall. Regulatory T cells (Tregs) limit inflammation and promote tissue healing. Low doses of interleukin (IL)-2 have the potential to increase Tregs, but its use is contraindicated for patients with ischemic heart disease.
View Article and Find Full Text PDFEpigenetic histone modifiers are key regulators of cell fate decisions in normal and malignant hematopoiesis. Their enzymatic activities are of particular significance as putative therapeutic targets in leukemia. In contrast, less is known about the contextual role in which those enzymatic activities are exercised and specifically how different macromolecular complexes configure the same enzymatic activity with distinct molecular and cellular consequences.
View Article and Find Full Text PDFAltered transcription is a cardinal feature of acute myeloid leukemia (AML); however, exactly how mutations synergize to remodel the epigenetic landscape and rewire three-dimensional DNA topology is unknown. Here, we apply an integrated genomic approach to a murine allelic series that models the two most common mutations in AML: Flt3-ITD and Npm1c. We then deconvolute the contribution of each mutation to alterations of the epigenetic landscape and genome organization, and infer how mutations synergize in the induction of AML.
View Article and Find Full Text PDFCancer Discov
December 2020
Recently, small-molecule inhibitors of general transcriptional regulators such as BET proteins and the RNA-PolII-regulating kinase CDK7 have been shown to have efficacy in multiple solid and liquid tumors. An article in this issue of identifies a nongenetic mechanism of resistance related to deficiency of folate that leads, via increased S-adenosylhomocysteine and reduced repressive histone methylation, to reactivation of a transcriptional program which promotes AML cell survival under the pressure of BET inhibition..
View Article and Find Full Text PDFB lymphocyte development and selection are central to adaptive immunity and self-tolerance. These processes require B cell receptor (BCR) signaling and occur in bone marrow, an environment with variable hypoxia, but whether hypoxia-inducible factor (HIF) is involved is unknown. We show that HIF activity is high in human and murine bone marrow pro-B and pre-B cells and decreases at the immature B cell stage.
View Article and Find Full Text PDF