Publications by authors named "Brian J Wenzel"

Unlabelled: Acute myocardial infarction (AMI) diagnosis in type II diabetes (DM2) patients is difficult and ECG findings are often non-diagnostic or inconclusive. We developed computer algorithms to process standard 12-lead ECG input data for quantitative 3-dimensional (3D) analysis (my3KGTM), and hypothesized that use of the my3KGTM's array of over 100 3D-based AMI diagnostic markers may improve diagnostic accuracy for AMI in DM2 patients.

Methods: We identified 155 consecutive DM2 patients age >25 yrs with chest discomfort or shortness of breath who were evaluated at an urban emergency department (130 patients (pts)) or the cardiac catheterization laboratory (25 pts) for possible AMI.

View Article and Find Full Text PDF

Individuals with spinal cord injury or neurological disorders may develop involuntary bladder contraction at low volumes (bladder hyper-reflexia), which can lead to significant health problems. Current devices can eliminate nascent contractions through continuous stimulation, but do not have a means to detect the onset of bladder contraction to stimulate conditionally. The objective of this study is to determine the relationship between the electrical activity of the pudendal nerve (PNT) and hyper-reflexive bladder contraction, and to use the relationship to develop an algorithm to detect the onset of a bladder contraction.

View Article and Find Full Text PDF

Activation of urethral or genital afferents of the pudendal nerve can elicit or inhibit micturition, and low frequency stimulation of the compound pudendal nerve (PN) is known to produce a continence response. The present study demonstrates that PN stimulation also can elicit a micturition-like response and that the response to PN stimulation is dependent on stimulation frequency. We measured the changes in bladder pressure and external urethral sphincter (EUS) electroneurogram (ENG) evoked by PN stimulation before and up to 16 h after spinal cord transection (SCT) in cats anaesthetized with alpha-chloralose.

View Article and Find Full Text PDF

Purpose: Individuals with spinal cord injury or neurological disorders may have neurogenic detrusor contractions at low volumes (bladder hyperreflexia), which cause incontinence and can lead to significant health problems. Bladder contractions can be suppressed by electrical stimulation of inhibitory pathways but continuous activation may lead to habituation of the inhibitory reflex and loss of continence. We determined whether conditional stimulation with electrical stimulation of inhibitory pathways applied only at the onset of nascent bladder contractions allows the bladder to fill to a greater volume before continence is lost compared with continuous stimulation.

View Article and Find Full Text PDF

Persons with a suprasacral spinal cord injury cannot empty their bladder voluntarily. Bladder emptying can be restored by intermittent electrical stimulation of the sacral nerve roots (SR) to cause bladder contraction. However, this therapy requires sensory nerve transection to prevent dyssynergic contraction of the external urethral sphincter (EUS).

View Article and Find Full Text PDF

Aims: Individuals with spinal cord injury or neurological disorders may develop bladder contractions at low volumes (neurogenic detrusor overactivity), which can lead to significant health problems. Present devices can inhibit unwanted contractions through continuous electrical stimulation of sensory nerves, but do not enable conditional stimulation only at the onset of bladder contractions. The objectives of this study were to determine the relationship between the electrical activity of external anal sphincter (EAS) and bladder pressure during neurogenic detrusor contractions and to determine whether EAS activity could be used to detect the onset of bladder contractions.

View Article and Find Full Text PDF

Individuals with a spinal cord injury or neurological disorders may develop involuntary bladder contractions at low volumes (bladder hyper-reflexia), which can lead to significant health problems. Present devices can inhibit unwanted contractions through continuous stimulation, but do not enable conditional stimulation only at the onset of bladder contractions. The objectives of this study were to determine the relationship between the electrical activity of the pudendal nerve trunk (PNT) and bladder pressure during hyper-reflexive bladder contractions and to determine whether PNT activity could be used to detect the contractions.

View Article and Find Full Text PDF

Reflexes mediated by urethral sensory pathways are integral to urinary function. This study investigated the changes in bladder pressure and urethral sphincter activity resulting from electrical stimulation of afferents in the deep perineal nerve (DP), which innervates the urethra and surrounding muscles, before and after acute spinal cord transection (SCT) in cats anesthetized with alpha-chloralose monitored by blood pressure and heart rate. DP stimulation elicited bladder contractions before and after SCT but only if the bladder contained a sufficient volume of fluid (78% of the volume needed to cause distention-evoked reflex contractions).

View Article and Find Full Text PDF