Publications by authors named "Brian J Sirovetz"

The accurate and reliable prediction of the 3D structures of proteins and their assemblies remains difficult even though the number of solved structures soars and prediction techniques improve. In this study, a free and open access web server, AWSEM-Suite, whose goal is to predict monomeric protein tertiary structures from sequence is described. The model underlying the server's predictions is a coarse-grained protein force field which has its roots in neural network ideas that has been optimized using energy landscape theory.

View Article and Find Full Text PDF

Protein sequences have evolved to fold into functional structures, resulting in families of diverse protein sequences that all share the same overall fold. One can harness protein family sequence data to infer likely contacts between pairs of residues. In the current study, we combine this kind of inference from coevolutionary information with a coarse-grained protein force field ordinarily used with single sequence input, the Associative memory, Water mediated, Structure and Energy Model (AWSEM), to achieve improved structure prediction.

View Article and Find Full Text PDF

The temperature-pressure behavior of two proteins, ubiquitin and λ-repressor, is explored using a realistically coarse-grained physicochemical model, the associative memory, water mediated, structure and energy model (AWSEM). The phase diagram across the temperature-pressure plane is obtained by perturbing the water mediated interactions in the Hamiltonian systematically. The phase diagrams calculated with direct simulations along with an extended bridge sampling estimator show the main features found experimentally, including both cold- and pressure-denaturation.

View Article and Find Full Text PDF