Publications by authors named "Brian J Limberg"

Using United States Pharmacopeia-National Formulary (USP-NF) general method <1223> guidance, the Soleris(®) automated system and reagents (Nonfermenting Total Viable Count for bacteria and Direct Yeast and Mold for yeast and mold) were validated, using a performance equivalence approach, as an alternative to plate counting for total microbial content analysis using five representative microbes: Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus brasiliensis. Detection times (DTs) in the alternative automated system were linearly correlated to CFU/sample (R(2) = 0.94-0.

View Article and Find Full Text PDF

Purpose: We studied the effects of chronic treatment with the novel selective cannabinoid 2 receptor agonist cannabinor (Procter & Gamble Pharmaceuticals, Cincinnati, Ohio) on bladder function in conscious rats with partial urethral obstruction and on the functional properties of isolated detrusor muscle.

Materials And Methods: A total of 24 female Sprague-Dawley® rats with surgically created partial urethral obstruction received daily intraperitoneal injections of 3 mg/kg cannabinor (12) or saline as controls (12) for 2 weeks. Cystometry was done, the rats were sacrificed and the bladders were prepared for in vitro studies.

View Article and Find Full Text PDF

Aims: To investigate the distribution of beta-3 adrenergic receptors (β(3)ARs) in the rat bladder and to examine the contribution of urothelial β(3)ARs to agonist-induced suppression of bladder reflexes and relaxation of smooth muscle.

Methods: Bladder tissue was collected from 8- to 10-month old female SD rats. In some samples, the urothelium was surgically separated from the smooth muscle.

View Article and Find Full Text PDF

β(3)-Adrenergic receptor agonists are currently under clinical development for the treatment of overactive bladder, a condition that is prevalent in postmenopausal women. These agents purportedly relax bladder smooth muscle through a direct action at the myocyte β(3)-receptor. The aim of this study was to examine the expression of the individual beta-adrenergic receptors in full thickness sections from ageing human female bladder.

View Article and Find Full Text PDF

Voiding dysfunctions, including increased voiding frequency, urgency, or incontinence, are prevalent in the postmenopausal population. Beta(3)-adrenergic receptor (beta(3)AR) agonists, which relax bladder smooth muscle, are being developed to treat these conditions. We utilized the rat ovariectomy (OVX) model to investigate the effect of ovarian hormone depletion on bladder function and the potential for beta(3)AR agonists to treat bladder hyperactivity in this setting.

View Article and Find Full Text PDF

The bicyclam AMD3100 is known as a small synthetic inhibitor of the CXCL12-binding chemokine receptor CXCR4. Here, we show that AMD3100 also binds to the alternative CXCL12 receptor CXCR7. CXCL12 or AMD3100 alone activate beta-arrestin recruitment to CXCR7, which we identify as a previously unreported signaling pathway of CXCR7.

View Article and Find Full Text PDF

We have utilized a rat model of peripheral artery disease (PAD) to examine whether the known angiogenic activity of the Y(2) receptor would translate into a meaningful increase in collateral blood flow. The maximal increase in collateral blood flow capacity of approximately 60% (p<0.001) was obtained with a 10microg/kgday (IA infusion, 14 days) of either PYY or PYY(3-36) and did not differ from that obtained with a maximally angiogenic dose of VEGF(165).

View Article and Find Full Text PDF

Neuropilin-1 (Npn-1) is a receptor for both semaphorin 3A (Sema3A) and vascular endothelial growth factor 165 (VEGF(165)). To understand the role Npn-1 plays as a receptor for these structurally and functionally unrelated ligands, we set out to identify structural features of Npn-1 that confer binding to Sema3A or VEGF(165). We constructed Npn-1 variants containing deletions within the "a" and "b" domains of Npn-1.

View Article and Find Full Text PDF