Nanopore technology holds remarkable promise for sequencing proteins and peptides. To achieve this, it is necessary to establish a characteristic profile for each individual amino acid through the statistical description of its translocation process. However, the subtle molecular differences among all twenty amino acids along with their unpredictable conformational changes at the nanopore sensing region result in very low distinguishability.
View Article and Find Full Text PDFNanopore technology has been employed as a powerful tool for DNA sequencing and analysis. To extend this method to peptide sequencing, a necessary step is to profile individual amino acids (AAs) through their nanopore stochastic signals, which remains a great challenge because of the low signal-to-noise ratio and unpredictable conformational changes of AAs during their translocation through nanopores. We showed that the combination of an N-terminal derivatization strategy of AAs with nanopore technology could lead to effective differentiation of AAs.
View Article and Find Full Text PDFComb Chem High Throughput Screen
July 2017
The addition of palmitoyl moieties to proteins regulates their membrane targeting, subcellular localization, and stability. Dysregulation of the enzymes which catalyzed the palmitoyl addition and/or the substrates of these enzymes have been linked to cancer, cardiovascular, and neurological disorders, implying these enzymes and substrates are valid targets for pharmaceutical intervention. However, current chemical modulators of zDHHC PAT enzymes lack specificity and affinity, underscoring the need for screening campaigns to identify new specific, high affinity modulators.
View Article and Find Full Text PDF