Publications by authors named "Brian J Larsen"

Many antibiotics, either directly or indirectly, cause DNA damage thereby activating the bacterial DNA damage (SOS) response. SOS activation results in expression of genes involved in DNA repair and mutagenesis, and the regulation of the SOS response relies on two key proteins, LexA and RecA. Genetic studies have indicated that inactivating the regulatory proteins of this response sensitizes bacteria to antibiotics and slows the appearance of resistance.

View Article and Find Full Text PDF

The 1,3-indandione scaffold is an important structural motif used in the preparation of a large number of industrial chemical and pharmaceutical compounds. However, few approaches allow for the direct C2 acylation on these building blocks. A method was developed using DMAP and EDCI, which is mild in reactivity, covers a diverse range of carboxylic acid acylating agents, is compatible with electron releasing and withdrawing substituents on the 1,3-indandione partner, and performs well in a polar aprotic solvent (for solubility reasons) This method cleanly afforded twenty five different products in yields of 32-96%.

View Article and Find Full Text PDF

The studies culminating in the total synthesis of the glutarimide-containing eukaryote translation elongation inhibitor lactimidomycin are described. The optimized synthetic route features a Zn(II)-mediated intramolecular Horner-Wadsworth-Emmons (HWE) reaction resulting in a highly stereoselective formation of the strained 12-membered macrolactone of lactimidomycin on a 423 mg scale. The presence of the E,Z-diene functionality was found to be key for effective macrocyclizations as a complete removal of these unsaturation units resulted in exclusive formation of the dimer rather than monocyclic enoate.

View Article and Find Full Text PDF

An enantioselective synthesis of potent eukaryotic translation elongation inhibitor lactimidomycin has been accomplished in 21 linear steps. This synthesis features a Zn(II)-mediated Horner-Wadsworth-Emmons reaction that could be executed on a large scale to provide the highly strained 12-membered lactimidomycin macrolactone.

View Article and Find Full Text PDF