Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has previously been suggested to have almost absolute control over the glycolytic flux in Lactococcus lactis (B. Poolman, B. Bosman, J.
View Article and Find Full Text PDFLactococcus lactis MBP71 deltathyA (thymidylate synthase) cannot synthesize dTTP de novo, and DNA replication is dependent on thymidine in the growth medium. In the nonreplicating state acidification by MBP71 was completely insensitive to bacteriophages (M. B.
View Article and Find Full Text PDFAntonie Van Leeuwenhoek
August 2002
The understanding of control of metabolic processes requires quantitative studies of the importance of the different enzymatic steps for the magnitude of metabolic fluxes and metabolite concentrations. An important element in such studies is the modulation of enzyme activities in small steps above and below the wild-type level. We review a genetic approach that is well suited for both Metabolic Optimization and Metabolic Control Analysis and studies on the importance of a number of glycolytic enzymes for metabolic fluxes in Lactococcus lactis.
View Article and Find Full Text PDFUsing molecular genetics we have introduced uncoupled ATPase activity in two different bacterial species, Escherichia coli and Lactococcus lactis, and determined the elasticities of the growth rate and glycolytic flux towards the intracellular [ATP]/[ADP] ratio. During balanced growth in batch cultures of E. coli the ATP demand was found to have almost full control on the glycolytic flux (FCC=0.
View Article and Find Full Text PDFWe studied how the introduction of an additional ATP-consuming reaction affects the metabolic fluxes in Lactococcus lactis. Genes encoding the hydrolytic part of the F(1) domain of the membrane-bound (F(1)F(0)) H(+)-ATPase were expressed from a range of synthetic constitutive promoters. Expression of the genes encoding F(1)-ATPase was found to decrease the intracellular energy level and resulted in a decrease in the growth rate.
View Article and Find Full Text PDFThe nature of the control of glycolytic flux is one of the central, as-yet-uncharacterized issues in cellular metabolism. We developed a molecular genetic tool that specifically induces ATP hydrolysis in living cells without interfering with other aspects of metabolism. Genes encoding the F(1) part of the membrane-bound (F(1)F(0)) H(+)-ATP synthase were expressed in steadily growing Escherichia coli cells, which lowered the intracellular [ATP]/[ADP] ratio.
View Article and Find Full Text PDF