Publications by authors named "Brian J Howard"

The rotational spectrum of the hetero dimer comprising doubly hydrogen-bonded formic acid and acetic acid has been recorded between 4 and 18 GHz using a pulsed-nozzle Fourier transform microwave spectrometer. Each rigid-molecule rotational transition is split into four as a result of two concurrently ongoing tunneling motions, one being proton transfer between the two acid molecules, and the other the torsion/rotation of the methyl group within the acetyl part. We present a full assignment of the spectrum J = 1 to J = 6 for the ground vibronic states.

View Article and Find Full Text PDF

Five different hydrogen-bonded conformers of the dimer of 2-propanol have been characterized by Fourier transform microwave spectroscopy. In all observed species, the proton donor moiety adopts a gauche conformation. While in the gauche monomer a transient chirality takes place, all dimers are classical chiral systems.

View Article and Find Full Text PDF

Although identical in formula, trans- and gauche-difluoroacetic acids behave as different molecules in rotational spectra due to their distinct sets of rotational constants. In this study, high-resolution microwave spectra of monohydrates, dihydrates, and trihydrates of both trans- and gauche-difluoroacetic acids were recorded using a Fourier transform microwave spectrometer. Rotational and centrifugal distortion constants of these hydrates were obtained with high accuracy via fitting their microwave spectra.

View Article and Find Full Text PDF

High-resolution microwave spectra of the monohydrate and dihydrate of acetic acid were recorded using a pulsed nozzle Fourier transform microwave spectrometer. The rotational and centrifugal distortion constants of these species were determined, which confirms the structures predicted by ab initio calculations that the H(2)O molecules bind to the carboxylic group to form hydrogen-bonded ring complexes. The dependence of the intensity of the rotational transitions on the power of the microwave pulses suggests that both hydrates have small a-and b-dipole moments of less than 0.

View Article and Find Full Text PDF

High-resolution microwave spectra of the propanoic acid monomer (PPA) and two of its hydrates, the PPA-(H2O) and the PPA-(H2O)2, were recorded using a pulsed nozzle Fourier transform microwave spectrometer. The rotational and centrifugal distortion constants of these species were determined. Agreements between the experimental and ab initio results of these constants, and of the planar moment of inertia, the dipole moments, and the orientation of the PPA relative to the H2O confirm the geometry of the hydrates, i.

View Article and Find Full Text PDF

The rotational spectra of the complexes between one trifluoroacetic acid molecule and up to three water molecules have been recorded using a pulsed nozzle Fourier transform microwave spectrometer. The unambiguous assignments of them are made on the basis of the agreement between the experimentally determined rotational constants and the theoretical predictions from ab initio calculations using MP2/6-311++G(2df,2pd). All the complexes exhibit hydrogen-bonded ring structures.

View Article and Find Full Text PDF

We present the first recording of the high-resolution spectrum of an induced chiral dimer. Three conformers of the induced chiral dimers of ethanol have been observed using a pulsed molecular-beam Fourier transform microwave spectrometer. The rotational constants of the normal isotopomers of the three species have been determined to be (a) A=5113.

View Article and Find Full Text PDF

Objective: To determine the rate of pelvic vein thrombosis following acetabular or pelvic fracture identified by enhanced computed tomography venography or magnetic resonance venography.

Design: Prospective evaluation of computed tomography venography and magnetic resonance venography in patients with pelvic and acetabular trauma as a screening tool for deep vein thrombosis.

Setting: Level I trauma center.

View Article and Find Full Text PDF