Publications by authors named "Brian J Halstead"

National parks and other protected areas are important for preserving landscapes and biodiversity worldwide. An essential component of the mission of the United States (U.S.

View Article and Find Full Text PDF

Mercury (Hg) is a toxic contaminant that has been mobilized and distributed worldwide and is a threat to many wildlife species. Amphibians are facing unprecedented global declines due to many threats including contaminants. While the biphasic life history of many amphibians creates a potential nexus for methylmercury (MeHg) exposure in aquatic habitats and subsequent health effects, the broad-scale distribution of MeHg exposure in amphibians remains unknown.

View Article and Find Full Text PDF

For endangered species persisting in a few populations, reintroductions to unoccupied habitat are a popular conservation action to increase viability in the long term. Identifying the reintroduction strategy that is most likely to result in viable founder and donor populations is essential to optimally use resources available for conservation. The San Francisco gartersnake (Thamnophis sirtalis tetrataenia) is an endangered sub-species that persists in a small number of populations in a highly urbanized region of California.

View Article and Find Full Text PDF

Introduced fungal pathogens have caused declines and extinctions of naïve wildlife populations across vertebrate classes. Consequences of introduced pathogens to hosts with small ranges might be especially severe because of limited redundancy to rescue populations and lower abundance that may limit the resilience of populations to perturbations like disease introduction. As a complement to biosecurity measures to prevent the spread of pathogens, surveillance programs may enable early detection of pathogens, when management actions to limit the effects of pathogens on naïve hosts might be most beneficial.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the aging rates and longevity of ectothermic tetrapods, specifically nonavian reptiles and amphibians, using data from 107 wild populations across 77 species.
  • It investigates how factors like thermoregulatory methods, environmental temperature, and life history strategies influence demographic aging among these animals.
  • The findings reveal that ectotherms exhibit more diverse aging rates than endotherms and show instances of negligible aging, highlighting the importance of studying these species to better understand the evolution of aging.
View Article and Find Full Text PDF

Estimates of demographic rates for animal populations and individuals have many applications for ecological and conservation research. In many animals, survival is size-dependent, but estimating the form of the size-survival relationship presents challenges. For elusive species with low recapture rates, individuals' size will be unknown at many points in time.

View Article and Find Full Text PDF

Timber harvesting can influence headwater streams by altering stream productivity, with cascading effects on the food web and predators within, including stream salamanders. Although studies have examined shifts in salamander occupancy or abundance following timber harvest, few examine sublethal effects such as changes in growth and demography. To examine the effect of upland harvesting on growth of the stream-associated Ouachita dusky salamander (), we used capture-mark-recapture over three years at three headwater streams embedded in intensely managed pine forests in west-central Arkansas.

View Article and Find Full Text PDF

Amphibian larvae are commonly used as indicators of aquatic ecosystem health because they are susceptible to contaminants. However, there is limited information on how species characteristics and trophic position influence contaminant loads in larval amphibians. Importantly, there remains a need to understand whether grazers (frogs and toads [anurans]) and predators (salamanders) provide comparable information on contaminant accumulation or if they are each indicative of unique environmental processes and risks.

View Article and Find Full Text PDF

Occupancy methods propelled the quantitative study of species distributions forward by separating the observation process, or the imperfect detectability of species, from the ecological processes of interest governing species distributions. Occupancy studies come at a cost, however: the collection of additional data to account for nondetections at sites where the species is present. The most common occupancy designs (repeated-measures designs) require repeat visits to sites or the use of multiple observers or detection methods.

View Article and Find Full Text PDF

The salamander chytrid fungus (Batrachochytrium salamandrivorans [Bsal]) is causing massive mortality of salamanders in Europe. The potential for spread via international trade into North America and the high diversity of salamanders has catalyzed concern about Bsal in the U.S.

View Article and Find Full Text PDF

Conversion and fragmentation of wildlife habitat often leads to smaller and isolated populations and can reduce a species' ability to disperse across the landscape. As a consequence, genetic drift can quickly lower genetic variation and increase vulnerability to extirpation. For species of conservation concern, quantification of population size and connectivity can clarify the influence of genetic drift in local populations and provides important information for conservation management and recovery strategies.

View Article and Find Full Text PDF

Regeneration of secondary forests on previously deforested or degraded land is one of the most dominant forms of land-use change in the tropics. However, the response of animal communities to forest regeneration is poorly understood. To evaluate support for thermal quality as a mechanism driving reptile species distributions during secondary forest succession, we measured operative temperatures and occupancy in three successional forest stages (pasture, secondary forest, and old growth forest) for two anole species common in the landscape (Norops humilis and Norops limifrons).

View Article and Find Full Text PDF

Almost all large rivers worldwide are fragmented by dams, and their impacts have been modeled using the serial discontinuity concept (SDC), a series of predictions regarding responses of key biotic and abiotic variables. We evaluated the effects of damming on anuran communities along a 245-km river corridor by conducting repeated, time-constrained anuran calling surveys at 42 locations along the Broad and Pacolet Rivers in South Carolina, USA. Using a hierarchical Bayesian analysis, we test the biodiversity prediction of the SDC (modified for floodplain rivers) by evaluating anuran occupancy and species diversity relative to dams and degree of urbanized land use.

View Article and Find Full Text PDF