Publications by authors named "Brian J Bondy"

Locomotion generates adventitious sounds which enable detection and localization of predators and prey. Such sounds contain brisk changes or transients in amplitude. We investigated the hypothesis that ill-understood temporal specializations in binaural circuits subserve lateralization of such sound transients, based on different time of arrival at the ears (interaural time differences, ITDs).

View Article and Find Full Text PDF

The neurons of the medial superior olive (MSO) of mammals extract azimuthal information from the delays between sounds reaching the two ears [interaural time differences (ITDs)]. Traditionally, all models of sound localization have assumed that MSO neurons represent a single population of cells with specialized and homogeneous intrinsic and synaptic properties that enable the detection of synaptic coincidence on a timescale of tens to hundreds of microseconds. Here, using patch-clamp recordings from large populations of anatomically labeled neurons in brainstem slices from male and female Mongolian gerbils (s), we show that MSO neurons are far more physiologically diverse than previously appreciated, with properties that depend regionally on cell position along the topographic map of frequency.

View Article and Find Full Text PDF

Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity.

View Article and Find Full Text PDF

Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating.

View Article and Find Full Text PDF

A microneedle patch coated with vaccine simplifies vaccination by using a patch-based delivery method and targets vaccination to the skin for superior immunogenicity compared to intramuscular injection. Previous studies of microneedles have demonstrated effective vaccination using freshly prepared microneedles, but the issue of long-term vaccine stability has received only limited attention. Here, we studied the long-term stability of microneedles coated with whole inactivated influenza vaccine guided by the hypothesis that crystallization and phase separation of the microneedle coating matrix damages influenza vaccine coated onto microneedles.

View Article and Find Full Text PDF