Here, we demonstrate a structure-based small molecule virtual screening and lead optimization pipeline using a homology model of a difficult-to-drug G-protein-coupled receptor (GPCR) target. Protease-activated receptor 4 (PAR4) is activated by thrombin cleavage, revealing a tethered ligand that activates the receptor, making PAR4 a challenging target. A virtual screen of a make-on-demand chemical library yielded a one-hit compound.
View Article and Find Full Text PDFFragment-based drug discovery begins with the identification of small molecules with a molecular weight of usually less than 250 Da which weakly bind to the protein of interest. This technique is challenging for computational docking methods as binding is determined by only a few specific interactions. Inaccuracies in the energy function or slight deviations in the docking pose can lead to the prediction of incorrect binding or difficulties in ranking fragments in screening.
View Article and Find Full Text PDFMembrane proteins are prone to misfolding and degradation. This is particularly true for mammalian forms of the gonadotropin-releasing hormone receptor (GnRHR). Although they function at the plasma membrane, mammalian GnRHRs accumulate within the secretory pathway.
View Article and Find Full Text PDFThe MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions. MRGPRX2 couples to both G and G in mast cells.
View Article and Find Full Text PDFThe use of unnatural fluorogenic molecules widely expands the pallet of available genetically encoded fluorescent imaging tools through the design of fluorogen activating proteins (FAPs). While there is already a handful of such probes available, each of them went through laborious cycles of in vitro screening and selection. Computational modeling approaches are evolving incredibly fast right now and are demonstrating great results in many applications, including de novo protein design.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
October 2021
In July 2021, we organized a virtual symposium aimed at early-career investigators (ECIs) in G protein-coupled receptor (GPCR) research: the first Transatlantic ECI GPCR Symposium. Here, we discuss the proceedings of this symposium and the unique networking events with GPCR leaders including the Nobel Laureates Dr. Robert Lefkowitz and Dr.
View Article and Find Full Text PDFStructure-based docking screens of large compound libraries have become common in early drug and probe discovery. As computer efficiency has improved and compound libraries have grown, the ability to screen hundreds of millions, and even billions, of compounds has become feasible for modest-sized computer clusters. This allows the rapid and cost-effective exploration and categorization of vast chemical space into a subset enriched with potential hits for a given target.
View Article and Find Full Text PDFStructure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University.
View Article and Find Full Text PDFAs sequencing methodologies continue to advance, the availability of protein sequences far outpaces the ability of structure determination. Homology modeling is used to bridge this gap but relies on high-identity templates for accurate model building. G-protein coupled receptors (GPCRs) represent a significant target class for pharmaceutical therapies in which homology modeling could fill the knowledge gap for structure-based drug design.
View Article and Find Full Text PDFThe Rosetta software for macromolecular modeling, docking and design is extensively used in laboratories worldwide. During two decades of development by a community of laboratories at more than 60 institutions, Rosetta has been continuously refactored and extended. Its advantages are its performance and interoperability between broad modeling capabilities.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2020
Chemokine receptors are a subset of G protein-coupled receptors defined by the distinct property of binding small protein ligands in the chemokine family. Chemokine receptors recognize their ligands by a mechanism that is distinct from other class A GPCRs that bind peptides or small molecules. For this reason, structural information on other ligand-GPCR interactions are only indirectly relevant to understanding the chemokine receptor interface.
View Article and Find Full Text PDFThe peptide ghrelin targets the growth hormone secretagogue receptor 1a (GHSR) to signal changes in cell metabolism and is a sought-after therapeutic target, although no structure is known to date. To investigate the structural basis of ghrelin binding to GHSR, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, site-directed mutagenesis, and Rosetta modeling. The use of saturation transfer difference NMR identified key residues in the peptide for receptor binding beyond the known motif.
View Article and Find Full Text PDFChemokines are soluble, secreted proteins that induce chemotaxis of leukocytes and other cells. Migratory cells can sense the chemokine concentration gradient following chemokine binding and activation of chemokine receptors, a subset of the G protein-coupled receptor (GPCR) superfamily. Chemokine receptor signaling plays a central role in cell migration during inflammatory responses as well as in cancer and other diseases.
View Article and Find Full Text PDFNeuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y, Y, Y and Y receptors, with different affinity and selectivity . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y receptor (YR) .
View Article and Find Full Text PDFThe poor norepinephrine innervation and high density of Gi/o-coupled α- and α-adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D-like receptor ligands, such as the D receptor agonist 7-OH-PIPAT and the D receptor agonist RO-105824, to α-adrenoceptors in cortical and striatal tissue, which express α-adrenoceptors and both α- and α-adrenoceptors, respectively.
View Article and Find Full Text PDFPrerequisite for structural studies on G protein-coupled receptors is the preparation of highly concentrated, stable, and biologically active receptor samples in milligram amounts of protein. Here, we present an improved protocol for expression, functional refolding, and reconstitution into bicelles of the human neuropeptide Y receptor type 2 (YR) for solution and solid-state NMR experiments. The isotopically labeled receptor is expressed in inclusion bodies and purified using SDS.
View Article and Find Full Text PDFPreviously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al.
View Article and Find Full Text PDFProteins that bind small molecules (ligands) can be used as biosensors, signal modulators, and sequestering agents. When naturally occurring proteins for a particular target ligand are not available, artificial proteins can be computationally designed. We present a protocol based on RosettaLigand to redesign an existing protein pocket to bind a target ligand.
View Article and Find Full Text PDFUnlabelled: Herpesvirus nucleocapsids exit the host cell nucleus in an unusual process known as nuclear egress. The human cytomegalovirus (HCMV) UL97 protein kinase is required for efficient nuclear egress, which can be explained by its phosphorylation of the nuclear lamina component lamin A/C, which disrupts the nuclear lamina. We found that a dominant negative lamin A/C mutant complemented the replication defect of a virus lacking UL97 in dividing cells, validating this explanation.
View Article and Find Full Text PDFProtein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44.
View Article and Find Full Text PDFProtein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro.
View Article and Find Full Text PDF