Publications by authors named "Brian J Akerley"

Unlabelled: Pneumococcal pneumonia causes cytotoxicity in the lung parenchyma but the underlying mechanism involves multiple factors contributing to cell death. Here, we discovered that hydrogen peroxide produced by (Spn-H O ) plays a pivotal role by oxidizing hemoglobin, leading to its polymerization and subsequent release of labile heme. At physiologically relevant levels, heme selected a population of encapsulated pneumococci.

View Article and Find Full Text PDF

() frequently causes secondary pneumonia after influenza A virus (IAV) infection, leading to high morbidity and mortality worldwide. Concomitant pneumococcal and influenza vaccination improves protection against coinfection but does not always yield complete protection. Impaired innate and adaptive immune responses have been associated with attenuated bacterial clearance in influenza virus-infected hosts.

View Article and Find Full Text PDF

Copper is an essential micronutrient but is toxic at high concentrations. In Haemophilus influenzae mechanisms of copper resistance and its role in pathogenesis are unknown; however, our previous genetic screen by transposon insertion-site sequencing implicated a putative cation transporting ATPase () in survival in a mouse lung infection model. Here, we demonstrate that H.

View Article and Find Full Text PDF

Secondary bacterial pneumonia after influenza A virus (IAV) infection is the leading cause of hospitalization and death associated with IAV infection worldwide. Nontypeable Haemophilus influenzae (NTHi) is one of the most common causes of secondary bacterial pneumonia. Current efforts to develop vaccines against NTHi infection focus on inducing antibodies but are hindered by antigenic diversity among NTHi strains.

View Article and Find Full Text PDF

Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed the antimicrobial activity of DoC and investigated its potential to eradicate S.

View Article and Find Full Text PDF

Nontypeable (NTHi), a common inhabitant of the human nasopharynx and upper airways, causes opportunistic respiratory tract infections that are frequently recurring and chronic. NTHi utilizes sialic acid from the host to evade antibacterial defenses and persist in mucosal tissues; however, the role of sialic acid scavenged by NTHi during infection is not fully understood. We previously showed that sialylation protects specific epitopes on NTHi lipooligosaccharide (LOS) targeted by bactericidal IgM in normal human serum.

View Article and Find Full Text PDF

is among the top causes of bacterial endophthalmitis, an infectious disease of the intraocular fluids. The mechanisms by which grows and thrives in the intraocular cavity are not well understood. We used a bacterial genome-wide assessment tool (transposon insertion site sequencing) to determine genes essential for growth in vitreous humor.

View Article and Find Full Text PDF

Nontypeable (NTHi) efficiently colonizes the human nasopharynx asymptomatically but also causes respiratory mucosal infections, including otitis media, sinusitis, and bronchitis. The lipooligosaccharide (LOS) on the cell surface of NTHi displays complex glycans that mimic host structures, allowing it to evade immune recognition. However, LOS glycans are also targets of host adaptive and innate responses.

View Article and Find Full Text PDF

In pathogens that produce lipooligosaccharide (LOS), sugar residues within the surface-exposed LOS outer core mediate interactions with components of the host immune system, promoting bacterial infection. Many LOS structures are controlled by phase variation mediated by random slipped-strand base mispairing, which can reversibly switch gene expression on or off. Phase variation diversifies the LOS, however its adaptive role is not well-understood.

View Article and Find Full Text PDF

Nontypeable (NTHi) is a major cause of community acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. A current effort in NTHi vaccine development has focused on generating humoral responses and has been greatly impeded by antigenic variation among the numerous circulating NTHi strains. In this study, we showed that pulmonary immunization of mice with killed NTHi generated broad protection against lung infection by different strains.

View Article and Find Full Text PDF

The property of transposons to randomly insert into target DNA has long been exploited for generalized mutagenesis and forward genetic screens. Newer applications that monitor the relative abundance of each transposon insertion in large libraries of mutants can be used to evaluate the roles in cellular fitness of all genes of an organism, provided that transposition is in fact random across all genes. In a recent article, Kimura and colleagues identified an important exception to the latter assumption [S.

View Article and Find Full Text PDF

Non-typeable Haemophilus influenzae (NTHi) cause a range of illnesses including otitis media, sinusitis, and exacerbation of chronic obstructive pulmonary disease, infections that contribute to the problem of antibiotic resistance and are themselves often intractable to standard antibiotic treatment regimens. We investigated a strategy to exploit binding of the complement inhibitor Factor H (FH) to NTHi as a functional target for an immunotherapeutic containing the NTHi binding domain of FH fused to the Fc domain of IgG1. Chimeric proteins containing the regions that most FH-binding bacteria use to engage human FH, domains 6 and 7 (FH6,7/Fc) and/or 18 through 20 (FH18-20/Fc), were evaluated for binding to NTHi.

View Article and Find Full Text PDF

The complement system is an important first line of defense against the human pathogen Haemophilus influenzae. To survive and propagate in vivo, H. influenzae has evolved mechanisms for subverting this host defense, most of which have been shown to involve outer surface structures, including lipooligosaccharide glycans and outer surface proteins.

View Article and Find Full Text PDF

Bacterial coinfection represents a major cause of morbidity and mortality in epidemics of influenza A virus (IAV). The bacterium Haemophilus influenzae typically colonizes the human upper respiratory tract without causing disease, and yet in individuals infected with IAV, it can cause debilitating or lethal secondary pneumonia. Studies in murine models have detected immune components involved in susceptibility and pathology, and yet few studies have examined bacterial factors contributing to coinfection.

View Article and Find Full Text PDF

Haemophilus influenzae is a Gram-negative bacterium that has no identified natural niche outside of the human host. It primarily colonizes the nasopharyngeal mucosa in an asymptomatic mode, but has the ability to disseminate to other anatomical sites to cause otitis media, upper, and lower respiratory tract infections, septicemia, and meningitis. To persist in diverse environments the bacterium must exploit and utilize the nutrients and other resources available in these sites for optimal growth/survival.

View Article and Find Full Text PDF

The pathways that comprise cellular metabolism are highly interconnected, and alterations in individual enzymes can have far-reaching effects. As a result, global profiling methods that measure gene expression are of limited value in predicting how the loss of an individual function will affect the cell. In this work, we employed a new method of global phenotypic profiling to directly define the genes required for the growth of Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Nontypeable Haemophilus influenzae (NTHI) is a Gram-negative bacterial pathogen that causes upper and lower respiratory infections. Factors required for pulmonary infection by NTHI are not well understood. Previously, using high-throughput insertion tracking by deep sequencing (HITS), putative lung colonization factors were identified.

View Article and Find Full Text PDF

Whole-genome techniques toward identification of microbial genes required for their survival and growth during infection have been useful for studies of bacterial pathogenesis. The advent of massively parallel sequencing platforms has created the opportunity to markedly accelerate such genome-scale analyses and achieve unprecedented sensitivity, resolution, and quantification. This chapter provides an overview of a genome-scale methodology that combines high-density transposon mutagenesis with a mariner transposon and deep sequencing to identify genes that are needed for survival in experimental models of pathogenesis.

View Article and Find Full Text PDF

Signaling mechanisms used by Haemophilus influenzae to adapt to conditions it encounters during stages of infection and pathogenesis are not well understood. The ArcAB two-component signal transduction system controls gene expression in response to respiratory conditions of growth and contributes to resistance to bactericidal effects of serum and to bloodstream infection by H. influenzae.

View Article and Find Full Text PDF

Rapid genome-wide identification of genes required for infection would expedite studies of bacterial pathogens. We developed genome-scale "negative selection" technology that combines high-density transposon mutagenesis and massively parallel sequencing of transposon/chromosome junctions in a mutant library to identify mutants lost from the library after exposure to a selective condition of interest. This approach was applied to comprehensively identify Haemophilus influenzae genes required to delay bacterial clearance in a murine pulmonary model.

View Article and Find Full Text PDF

Haemophilus influenzae efficiently colonizes and persists at the human nasopharyngeal mucosa, causing disease when it spreads to other sites. Nitric oxide (NO) represents a major antimicrobial defense deployed by host cells in locations colonized by H. influenzae during pathogenesis that are likely to vary in oxygen levels.

View Article and Find Full Text PDF

Nontypeable Haemophilus influenzae is an obligate human parasite that often causes middle ear infections in children and exacerbates chronic obstructive pulmonary disorder, the fourth leading cause of death in the United States. There are no effective vaccines available for this strain. The lipoprotein YraM (gene HI1655) was identified as essential for the growth and viability of H.

View Article and Find Full Text PDF

The human respiratory pathogen Haemophilus influenzae, a Gram-negative bacterium, is the first free-living organism to have its complete genome sequenced, providing the opportunity to apply genomic-scale approaches to study gene function. This chapter provides an overview of a highly efficient, in vitro mariner transposon-based method that exploits the natural transformation feature of this organism for the identification of essential genes. In addition, we describe strategies for conditional expression systems that would facilitate further analysis of this class of genes.

View Article and Find Full Text PDF

Haemophilus influenzae is an obligate human pathogen that persistently colonizes the nasopharynx and causes disease when it invades the bloodstream, lungs, or middle ear. Proteins that mediate critical interactions with the host during invasive disease are likely to be secreted. Many secreted proteins require addition of disulfide bonds by the DsbA disulfide oxidoreductase for activity or stability.

View Article and Find Full Text PDF

Haemophilus influenzae transits between niches within the human host that are predicted to differ in oxygen levels. The ArcAB two-component signal transduction system controls gene expression in response to respiratory conditions of growth and has been implicated in bacterial pathogenesis, yet the mechanism is not understood. We undertook a genome-scale study to identify genes of the H.

View Article and Find Full Text PDF