Gliomas are highly aggressive brain tumors characterized by poor prognosis and composed of diffusely infiltrating tumor cells that intermingle with non-neoplastic cells in the tumor microenvironment, including neurons. Neurons are increasingly appreciated as important reactive components of the glioma microenvironment, due to their role in causing hallmark glioma symptoms, such as cognitive deficits and seizures, as well as their potential ability to drive glioma progression. Separately, mTOR signaling has been shown to have pleiotropic effects in the brain tumor microenvironment, including regulation of neuronal hyperexcitability.
View Article and Find Full Text PDFPurpose: While MGMT promoter methylation (mMGMT) is predictive of response to alkylating chemotherapy and guides treatment decisions in glioblastoma, its role in grade 2 and 3 glioma remains unclear. Recent data suggest that mMGMT is prognostic of progression-free survival in 1p/19q-codeleted oligodendrogliomas, but an effect on overall survival (OS) has not been demonstrated.
Experimental Design: We identified patients with newly diagnosed 1p/19q-codeleted gliomas and known MGMT promoter status in the National Cancer Database from 2010 to 2019.
Glioblastoma (GBM) diffusely infiltrates the brain and intermingles with non-neoplastic brain cells, including astrocytes, neurons and microglia/myeloid cells. This complex mixture of cell types forms the biological context for therapeutic response and tumor recurrence. We used single-nucleus RNA sequencing and spatial transcriptomics to determine the cellular composition and transcriptional states in primary and recurrent glioma and identified three compositional 'tissue-states' defined by cohabitation patterns between specific subpopulations of neoplastic and non-neoplastic brain cells.
View Article and Find Full Text PDFBackground: Topotecan is cytotoxic to glioma cells but is clinically ineffective because of drug delivery limitations. Systemic delivery is limited by toxicity and insufficient brain penetrance, and, to date, convection-enhanced delivery (CED) has been restricted to a single treatment of restricted duration. To address this problem, we engineered a subcutaneously implanted catheter-pump system capable of repeated, chronic (prolonged, pulsatile) CED of topotecan into the brain and tested its safety and biological effects in patients with recurrent glioblastoma.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures.
View Article and Find Full Text PDFWhile several studies have attributed the development of tumour-associated seizures to an excitatory-inhibitory imbalance, we have yet to resolve the spatiotemporal interplay between different types of neuron in glioma-infiltrated cortex. Herein, we combined methods for single unit analysis of microelectrode array recordings with wide-field optical mapping of Thy1-GCaMP pyramidal cells in an ex vivo acute slice model of diffusely infiltrating glioma. This enabled simultaneous tracking of individual neurons from both excitatory and inhibitory populations throughout seizure-like events.
View Article and Find Full Text PDFGerm cell tumors account for up to 53% of the malignant lesions found in the pineal region and are typically managed with a combination of radiation therapy and chemotherapy. Malignant somatic transformation of intracranial germ cell tumors is exceedingly rare and has only been reported on two other occasions. Here the authors present the case of a pineal yolk sac tumor that failed optimum first-line treatment and underwent malignant somatic transformation to an enteric mucinous adenocarcinoma requiring surgical intervention.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
September 2021
Lumbar spine synovial cysts develop from degenerated zygapophyseal joints. Symptomatic patients present with radicular pain and weakness or neurogenic claudication.1 In the absence of significant concomitant degenerative spondylolisthesis, symptomatic patients can be managed with a laminectomy and microsurgical resection of the cyst, without the need for instrumented fusion.
View Article and Find Full Text PDFThe purpose of this study is to develop a platform in which the cellular and molecular underpinnings of chronic focal neocortical lesional epilepsy can be explored and use it to characterize seizure-like events (SLEs) in an ex vivo model of infiltrating high-grade glioma. Microelectrode arrays were used to study electrophysiologic changes in ex vivo acute brain slices from a PTEN/p53 deleted, PDGF-B driven mouse model of high-grade glioma. Electrode locations were co-registered to the underlying histology to ascertain the influence of the varying histologic landscape on the observed electrophysiologic changes.
View Article and Find Full Text PDFBackground: Accurate tissue sampling in nonenhancing (NE) gliomas is a unique surgical challenge due to their intratumoral histological heterogeneity and absence of contrast enhancement as a guide for intraoperative stereotactic guidance. Instead, T2/fluid-attenuated inversion-recovery (FLAIR) hyperintensity on MRI is commonly used as an imaging surrogate for pathological tissue, but sampling from this region can yield nondiagnostic or underdiagnostic brain tissue. Sodium fluorescein is an intraoperative fluorescent dye that has a high predictive value for tumor identification in areas of contrast enhancement and NE in glioblastomas.
View Article and Find Full Text PDF