Publications by authors named "Brian Hilbush"

Obesity is becoming the new pediatric epidemic. Non-alcoholic fatty liver disease (NAFLD) is frequently associated with obesity and has become the most common cause of pediatric liver disease. The gut microbiome is the major metabolic organ and determines how calories are processed, serving as a caloric gate and contributing towards the pathogenesis of NAFLD.

View Article and Find Full Text PDF

We describe an "integrated genome-phenome analysis" that combines both genomic sequence data and clinical information for genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis and the genomic variants using a "pertinence" metric. This allows the analysis to be hypothesis-independent, not requiring assumptions about mode of inheritance, number of genes involved, or which clinical findings are most relevant.

View Article and Find Full Text PDF

The analysis of whole-genome or exome sequencing data from trios and pedigrees has been successfully applied to the identification of disease-causing mutations. However, most methods used to identify and genotype genetic variants from next-generation sequencing data ignore the relationships between samples, resulting in significant Mendelian errors, false positives and negatives. Here we present a Bayesian network framework that jointly analyzes data from all members of a pedigree simultaneously using Mendelian segregation priors, yet providing the ability to detect de novo mutations in offspring, and is scalable to large pedigrees.

View Article and Find Full Text PDF

Distinguishing single-nucleotide variants (SNVs) from errors in whole-genome sequences remains challenging. Here we describe a set of filters, together with a freely accessible software tool, that selectively reduce error rates and thereby facilitate variant detection in data from two short-read sequencing technologies, Complete Genomics and Illumina. By sequencing the nearly identical genomes from monozygotic twins and considering shared SNVs as 'true variants' and discordant SNVs as 'errors', we optimized thresholds for 12 individual filters and assessed which of the 1,048 filter combinations were effective in terms of sensitivity and specificity.

View Article and Find Full Text PDF

Three loci that modify β-amyloid (Aβ) accumulation and deposition in the brains of a mouse model of Alzheimer's disease have been previously described. One encompasses the Psen2 gene encoding presenilin 2, a component of the γ-secretase activity responsible for generating Aβ by proteolysis. We show that the activity of mouse Psen2, as measured by levels of mRNA accumulation, unexpectedly is heritable in the liver but not the brain, suggesting liver as the origin of brain Aβ deposits.

View Article and Find Full Text PDF

The future of neurodegenerative therapeutics development depends upon effective disease modification strategies centered on carefully investigated targets. Pharmaceutical research endeavors that probe for a much deeper understanding of disease pathogenesis, and explain how adaptive or compensatory mechanisms might be engaged to delay disease onset or progression, will produce the needed breakthroughs. Below, we discuss the prospects for new targets emerging out of the study of brain disease genes and their associated pathogenic pathways.

View Article and Find Full Text PDF

Ataxia telangiectasia (A-T) is an autosomal recessive disease caused by loss of function of the serine/threonine protein kinase ATM (ataxia telangiectasia mutated). A-T patients have a 250-700-fold increased risk of developing lymphomas and leukemias which are typically highly invasive and proliferative. In addition, a subset of adult acute lymphoblastic leukemias and aggressive B-cell chronic lymphocytic leukemias that occur in the general population show loss of heterozygosity for ATM.

View Article and Find Full Text PDF

Chronic exposure to opiates produces dependence and addiction, which may result from neuroadaptations in the dopaminergic reward pathway and its target brain regions. The neuronal protein alpha-synuclein has been implicated in neuronal plasticity and proposed to serve as a negative regulator of dopamine neurotransmission. Thus, alpha-synuclein could mediate some effects of opiates in the brain.

View Article and Find Full Text PDF

Brain inflammation is regulated by endogenous substances, including neurotransmitters such as noradrenaline (NA), which can increase anti-inflammatory genes. To identify NA-regulated, anti-inflammatory genes, we used TOGA (total gene expression analysis) to screen rat astrocyte-derived RNA. NA-inducible cDNA clone DST11 encodes an isoform of the complement C5a receptor (C5aR), with 39% identity at the amino acid level to the rat C5aR, and 56% identity to a recently described human C5aR variant termed C5L2 (complement 5a-like receptor).

View Article and Find Full Text PDF

Ongoing development of vaccines is limited by the techniques used to identify routes to immunization. Using open system gene expression profiling, researchers can now directly identify receptors used by M-cells in the transport of antigens to the mucosal immune system. These receptors will be ideal for targeted delivery of new synthetic vaccines.

View Article and Find Full Text PDF

We have previously shown that alpha/beta interferon (IFN-alpha/beta) and IFN-gamma inhibit hepatitis B virus (HBV) replication noncytopathically in the livers of HBV transgenic mice and in hepatocyte cell lines derived from these mice. The present study was designed to identify transcriptionally controlled hepatocellular genes that are tightly associated with the inhibition of HBV replication and that might, therefore, mediate the antiviral effect of these cytokines. Twenty-nine genes were identified, many of which have known or potential antiviral activity.

View Article and Find Full Text PDF

Microglial activation is an early and common feature of almost all neuropathologies, including multiple sclerosis, Alzheimer's disease and mechanical injury. To better understand the relative contributions microglia make toward neurodegeneration and neuroprotection, we used TOGA(R) to identify molecules expressed by microglia and regulated by inflammatory signals. Triggering receptor expressed on myeloid cells-2 (TREM-2) was among the mRNAs identified as being expressed by unactivated microglia, but down-regulated by lipopolysaccharide/interferon gamma.

View Article and Find Full Text PDF

Drug delivery technologies are commonly directed towards formulations to control the delivery of therapeutic compounds. However, many processes in the human body have evolved to regulate the transport of various molecules, cells, or particles across epithelial barriers. To take advantage of this biology, we used TOGA gene expression profiling to identify receptor or transporter molecules to target delivery vehicles for transport across an epithelial barrier.

View Article and Find Full Text PDF

A central tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles.

View Article and Find Full Text PDF