Patterned membrane surfaces offer a hydrodynamic approach to mitigating concentration polarization and subsequent surface fouling. However, when subjected to steady crossflow conditions, surface patterns promote particle accumulation in the recirculation zones of cavity-like spaces. In order to resolve this issue, we numerically subject a two-dimensional, patterned membrane surface to a rapidly pulsed crossflow.
View Article and Find Full Text PDFAnalysis of stool offers simple, non-invasive monitoring for many gastrointestinal (GI) diseases and access to the gut microbiome, however adherence to stool sampling protocols remains a major challenge because of the prevalent dislike of handling one's feces. We present a technology that enables individual stool specimen collection from toilet wastewater for fecal protein and molecular assay. Human stool specimens and a benchtop test platform integrated with a commercial toilet were used to demonstrate reliable specimen collection over a wide range of stool consistencies by solid/liquid separation followed by spray-erosion.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2022
Four phase III clinical trials of oral direct factor Xa or thrombin inhibitors demonstrated significantly lower intracranial hemorrhage compared to warfarin in patients with nonvalvular-atrial fibrillation. This is counter-intuitive to the principle that inhibiting thrombosis should increase hemorrhagic risk. We tested the novel that anti-thrombin activity decreases the risk of intracerebral hemorrhage by directly inhibiting thrombin-mediated degradation of cerebral microvessel basal lamina matrix, responsible for preventing hemorrhage.
View Article and Find Full Text PDFProviding safe and reliable sanitation services to the billions of people currently lacking them will require a multiplicity of approaches. Improving onsite wastewater treatment to standards enabling water reuse would reduce the need to transport waste and fresh water over long distances. Here, we describe a compact, automated system designed to treat the liquid fraction of blackwater for onsite water reuse that combines cross-flow ultrafiltration, activated carbon, and electrochemical oxidation.
View Article and Find Full Text PDFThe aims of the Reinvent the Toilet Challenge (RTTC) include creation of an off-the-grid sanitation system with operating costs of less than US$0.05 per user per day. Because of the small scale at which many reinvented toilets (RT) are intended to operate, non-biological treatment has been generally favored.
View Article and Find Full Text PDFA challenge in water reuse for toilet flushing in India and other Asian countries derives from pour flushing practices. It is a common assumption that the amount of pour flushed water used for personal cleansing is small in comparison to the cistern flush volume, however there is a knowledge gap regarding the actual contribution of each water source to the blackwater amount. In this study, digital water meters were used to measure the fraction of water from personal wash tap relative to cistern water that is used for toilet flushing.
View Article and Find Full Text PDF4.2 billion people live without access to safely managed sanitation services. This report describes the field testing of an onsite prototype system designed to treat blackwater from a single flush toilet and reuse of the treated effluent for flushing.
View Article and Find Full Text PDFInnovations that enable cost-effective and resource-conserving treatment of human waste are required for the 4.2 billion people in the world who currently lack safe and reliable sanitation services. Onsite treatment and reuse of blackwater is one strategy towards this end, greatly reducing the need to transport wastewater over long distances either via sewers or trucks.
View Article and Find Full Text PDFOnsite reuse of blackwater requires removal of considerable amounts of suspended solids and organic material in addition to inactivation of pathogens. Previously, we showed that electrochemical treatment could be used for effective pathogen inactivation in blackwater, but was inadequate to remove solids and organics to emerging industry standards. Further, we found that as solids and organics accumulate with repeated recycling, electrochemical treatment becomes less energetically sustainable.
View Article and Find Full Text PDFOur research is focused on the development of decentralized waste water treatment technologies enabling onsite water reuse. Accumulation of solids with recycling of treated blackwater increases the energy required for disinfection with an electrochemical process. We hypothesized that improving the preprocess settling of blackwater by increasing the tortuosity of the liquid flow path would reduce this energy demand by reducing particle-associated chemical oxygen demand (COD).
View Article and Find Full Text PDFOver 1/3 of the global population lacks access to improved sanitation, leading to disease, death, and impaired economic development. Our group is working to develop rapidly deployable, cost-effective, and sustainable solutions to this global problem that do not require significant investments in infrastructure. Previously, we demonstrated the feasibility of a toilet system that recycles blackwater for onsite reuse as flush water, in which the blackwater is electrochemically treated to remove pathogens due to fecal contamination.
View Article and Find Full Text PDFOrganophosphate-based compounds (OPs) represent a significant threat to warfighters (nerve agents) and civilian populations (pesticides). There is a pressing need to develop in vitro brain models that correlate to the in vivo brain to rapidly study OPs for neurotoxicity. Here we report on a microfluidic-based three-dimensional, four-cell tissue construct consisting of 1) a blood-brain barrier that has dynamic flow and membrane-free culture of the endothelial layer, and 2) an extracellular matrix (ECM)-embedded tissue construct with neuroblastoma, microglia, and astrocytes.
View Article and Find Full Text PDFDecentralized, energy-efficient waste water treatment technologies enabling water reuse are needed to sustainably address sanitation needs in water- and energy-scarce environments. Here, we describe the effects of repeated recycling of disinfected blackwater (as flush liquid) on the energy required to achieve full disinfection with an electrochemical process in a prototype toilet system. The recycled liquid rapidly reached a steady state with total solids reliably ranging between 0.
View Article and Find Full Text PDFAcutely following focal cerebral ischemia disruption of the microvessel blood-brain barrier allows transit of plasma proteins into the neuropil as edema formation that coincides with loss of microvessel endothelial β1-integrins. We extend previous findings to show that interference with endothelial β1-integrin-matrix adhesion by the monoclonal IgM Ha2/5 increases the permeability of primary cerebral microvascular endothelial cell monolayers through reorganization of claudin-5, occludin, and zonula occludens-1 (ZO-1) from inter-endothelial borders. Interference with β1-integrin-matrix adhesion initiates F-actin conformational changes that coincide with claudin-5 redistribution.
View Article and Find Full Text PDFAngiogenesis is a dynamic and energy-consuming process, requiring endothelial cells to switch from a quiescent state to a migratory and proliferative phenotype in order to support the formation of new blood vessels. Despite their proximity to oxygenated blood endothelial cells are adept at utilizing glycolysis as an energy source to the detriment of mitochondrial oxidative phosphorylation. In this context, endothelial mitochondria have emerged as signaling hubs that modulate a wide range of endothelial functions, including angiogenesis, by coordinating reactive oxygen species and calcium signaling, metabolism and apoptosis.
View Article and Find Full Text PDFThis work investigates the surface chemistry of HO generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry.
View Article and Find Full Text PDFTranslating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, "organotypic" cell cultures, which mimic functional responses of living tissue.
View Article and Find Full Text PDFWe report a microfluidic blood-brain barrier model that enables both physiological shear stress and optical transparency throughout the device. Brain endothelial cells grown in an optically transparent membrane-integrated microfluidic device were able to withstand physiological fluid shear stress using a hydrophilized polytetrafluoroethylene nanoporous membrane instead of the more commonly used polyester membrane. A functional three-dimensional microfluidic co-culture model of the neurovascular unit is presented that incorporates astrocytes in a 3D hydrogel and enables physiological shear stress on the membrane-supported endothelial cell layer.
View Article and Find Full Text PDFBackground: Improvement teams make causal inferences, but the methods they use are based on statistical associations. This article shows how data and statistical models can be used to help improvement teams make causal inferences and find the root causes of problems.
Methods: This article uses attribution data, competing risk survival analysis, and Bayesian network probabilities to analyze excessive emergency department (ED) stays within one hospital.
Rationale: The mitochondrial permeability transition pore is a well-known initiator of cell death that is increasingly recognized as a physiological modulator of cellular metabolism.
Objective: We sought to identify how the genetic deletion of a key regulatory subunit of the mitochondrial permeability transition pore, cyclophilin D (CypD), influenced endothelial metabolism and intracellular signaling.
Methods And Results: In cultured primary human endothelial cells, genetic targeting of CypD using siRNA or shRNA resulted in a constitutive increase in mitochondrial matrix Ca(2+) and reduced nicotinamide adenine dinucleotide (NADH).
Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
June 2015
Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin.
View Article and Find Full Text PDF