Publications by authors named "Brian Hawes"

Peptide-based analogues of the gut-derived incretin hormone, glucagon-like peptide 1 (GLP1), stimulate insulin secretion in a glucose-dependent manner. Currently marketed GLP1 receptor (GLP1R) agonists are safe and effective in the management of Type 2 diabetes but often offer only modest weight loss. This has prompted the search for safe and effective alternatives to enhance the weight loss component of these treatments.

View Article and Find Full Text PDF

The synthesis and structure activity relationship development of a pyrimidine series of heterocyclic Factor IXa inhibitors is described. Increased selectivity over Factor Xa inhibition was achieved through SAR expansion of the P1 element. Select compounds were evaluated in vivo to assess their plasma levels in rat.

View Article and Find Full Text PDF

A series of 4, 4-disubstituted proline analogs were designed, synthesized, and tested for selective inhibition of blood coagulation factor XIa in search of new non-vitamin K antagonists based oral anticoagulants for potential prevention and treatment of thrombotic diseases. Starting from a potent thrombin (FIIa) inhibitor chemotype with FIIa IC = 1 nM and FXIa IC = 160 nM, medicinal chemistry iterations guided by molecular modeling and structure-based drug design led to steady improvement of FXIa potency while dialing down thrombin activity and improving selectivity. Through this exercise, a thousand-fold enhancement of selectivity over thrombin was achieved with some analogs carrying factor XIa inhibition potencies in the 10 nM range.

View Article and Find Full Text PDF

The ever-growing prevalence of type 2 diabetes in the world has necessitated an urgent need for multiple orally effective agents that can regulate glucose homeostasis with a concurrent reduction in body weight. G-Protein coupled receptor 119 (GPR119) is a GPCR target at which agonists have demonstrated glucose-dependent insulin secretion and shows beneficial effects on glycemic control. Herein, we describe our efforts leading to the identification of a potent, oral GPR-119 agonist, MK-8282, which shows improved glucose tolerance in multiple animal models and has excellent off-target profile.

View Article and Find Full Text PDF

A promising emerging area for the treatment of obesity and diabetes is combinatorial hormone therapy, where single-molecule peptides are rationally designed to integrate the complementary actions of multiple endogenous metabolically-related hormones. We describe here a proof-of-concept study on developing unimolecular polypharmacy agents through the use of selection methods based on phage-displayed peptide libraries (PDL). Co-agonists of the glucagon (GCG) and GLP-1 receptors were identified from a PDL sequentially selected on GCGR- and GLP1R-overexpressing cells.

View Article and Find Full Text PDF

The design and synthesis of two conformationally restricted oxazabicyclo octane derivatives as GRP119 agonists is described. Derivatives of scaffold C, with syn configuration, have the best overall profiles with respect to solubility and in vivo efficacy. Compound 25a was found to have extremely potent agonistic activity and was orally active in lowering blood glucose levels in a mouse oral glucose tolerance test at a dose of 0.

View Article and Find Full Text PDF

Vorapaxar is a novel protease-activated receptor-1 (PAR1) antagonist recently approved for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. The present study provides a comprehensive in vitro pharmacological characterization of vorapaxar interaction with the PAR1 receptor on human platelets. Similar studies were performed with a metabolite of vorapaxar (M20).

View Article and Find Full Text PDF

Modification of the previously disclosed (S)-N-(2-(aminomethyl)-5-chlorobenzyl)-1-((R)-2-hydroxy-3,3-dimethylbutanoyl)pyrrolidine-2-carboxamide 2 by optimization of the P3 group afforded novel, low molecular weight thrombin inhibitors. Heterocycle replacement of the hydroxyl functional group helped maintain thrombin in vitro potency while improving the chemical stability and pharmacokinetic profile. These modifications led to the identification of compound 10, which showed excellent selectivity over related serine proteases as well as in vivo efficacy in the rat arteriovenous shunt.

View Article and Find Full Text PDF

Prevention and treatment of thromboembolic disorders with minimal bleeding risk remains a significant unmet medical need. Studies in Factor XI (FXI)-deficient humans and experimental animal models suggest that targeting FXI in humans provides antithrombotic benefits with reduced bleeding liability compared with current standard of care. In this review, we describe an exciting era in the discovery and development of antithrombotic agents as multiple therapeutic modalities for FXI(a) inhibition progress through preclinical and clinical development.

View Article and Find Full Text PDF

The lead optimization studies of a series of GPR119 agonists incorporating a nortropanol scaffold are described. Extensive structure-activity relationship (SAR) studies of the lead compound 20f led to the identification of compound 36j as a potent, single digit nanomolar GPR119 agonist with high agonist activity. Compound 36j was orally active in lowering blood glucose levels in a mouse oral glucose tolerance test and increased plasma insulin levels in a rat hyperglycemic model.

View Article and Find Full Text PDF

Melanin-concentrating hormone receptor 1 (MCH-R1) is a G-protein-coupled receptor (GPCR) and a target for the development of therapeutics for obesity. The structure-based development of MCH-R1 and other GPCR antagonists is hampered by the lack of an available experimentally determined atomic structure. A ligand-steered homology modeling approach has been developed (where information about existing ligands is used explicitly to shape and optimize the binding site) followed by docking-based virtual screening.

View Article and Find Full Text PDF

To address the hERG liability of MCHR1 antagonists such as 1 and 2, new analogs such as 4 and 5 that incorporated a polar heteroaryl group were designed and synthesized. Biological evaluation confirmed that these new analogs retained MCH R1 activity with greatly attenuated hERG liabilities as indicated in the Rb efflux assay.

View Article and Find Full Text PDF

To improve the ex vivo potency of MCH inhibitor 1a and to address its hERG liability, a structure-activity study was carried out, focusing on three regions of the lead structure. Introduction of new side chains with basic nitrogen improved in vitro and ex vivo bindings. Many potent compounds with K(i)<10nM were discovered (compounds 6a-j) and several compounds (14-17) had excellent ex vivo binding at 6h and 24h.

View Article and Find Full Text PDF

Ezetimibe is the first in class 2-azetidinone that decreases plasma cholesterol by blocking intestinal cholesterol absorption. Ezetimibe effectively reduces plasma cholesterol in several species including human, monkey, dog, hamster, rat, and mouse, but the potency ranges widely. One potential factor responsible for this variation in responsiveness is diversity in ezetimibe metabolism.

View Article and Find Full Text PDF

A series of novel aminobenzimidazoles was prepared and evaluated for h-MCH-R1 antagonist properties. Most of the compounds showed excellent h-MCH-R1 binding affinity as well as mouse ex vivo binding. Compounds 9 and 18 were active in mouse DIO studies at 30mpk.

View Article and Find Full Text PDF

Herein, we report the discovery of an effective strategy to modulate liabilities related to affinity of previously disclosed bicyclohexane MCHR-1 antagonists for the hERG channel. This paper describes one of several strategies incorporated to limit hERG binding via modifications of a terminal aryl group in an otherwise promising bicyclohexyl urea series.

View Article and Find Full Text PDF

Biaryl urea lead compound 1 was discovered earlier in our MCH antagonist program. Novel benzimidazole analogues with increased chemical stability, devoid of the potential carcinogenic liability associated with a biarylamine moiety, were synthesized and evaluated to be potent MCH R1 antagonists. Two compounds in this series have demonstrated in vivo efficacy in a rodent obesity model.

View Article and Find Full Text PDF

Isosteric replacement of the urea group of lead compound 1 led to novel substituted piperidine phenylamide analogues. SAR on the electron-induced effects of various linkers as well as substituents on the phenyl rings and the piperidine nitrogen has been investigated. Many single-digit nanomolar MCH R1 antagonists have been identified from this series.

View Article and Find Full Text PDF

Melanin-concentrating hormone (MCH) is a cyclic, nonadecapeptide expressed in the CNS of all vertebrates that regulates feeding behavior and energy homeostasis via interaction with the central melanocortin system. Regulation of this interaction results in modulation of food intake and body weight gain, demonstrating significant therapeutic potential for the treatment of obesity. The MCH-1 receptor (MCH-R1) has been identified as a key target in MCH regulation, as small molecule antagonists of MCH-R1 have demonstrated activity in vivo.

View Article and Find Full Text PDF

Melanin concentrating hormone (MCH) is a cyclic neuropeptide expressed in the lateral hypothalamus that plays an important role in energy homeostasis. To investigate the pharmacological consequences of inhibiting MCH signaling in murine obesity models, we examined the effect of acute and chronic administration of a selective MCH1 receptor antagonist (SCH-A) in diet-induced obese (DIO) and Lep(ob/ob) mice. Oral administration of SCH-A for 5 consecutive days (30 mg/kg q.

View Article and Find Full Text PDF

Melanin concentrating hormone (MCH) receptor antagonists have been proposed as potential treatments of obesity. MCH receptor antagonists with a biphenylamine subunit have been reported previously at Schering-Plough. Herein, we report the discovery of bicyclo[4.

View Article and Find Full Text PDF

Herein, we report the discovery of the potent and selective biaryl diamide derived MCH-R1 receptor antagonist 1, which was identified upon modification of a previously disclosed biaryl urea series. This paper describes one of the strategies incorporated to remove the highly mutagenic biarylaniline present in an otherwise promising biaryl urea series.

View Article and Find Full Text PDF

Herein, we report a small molecule MCH-R1 antagonist which demonstrates oral efficacy in chronic rodent models. Substituted phenyl biaryl urea derivatives were synthesized and evaluated as MCH-R1 antagonists for the treatment of obesity. The structure-activity relationship studies in this series resulted in identification of urea 1 as a potent and selective MCH-R1 antagonist.

View Article and Find Full Text PDF

Ezetimibe is a potent inhibitor of cholesterol absorption that has been approved for the treatment of hypercholesterolemia, but its molecular target has been elusive. Using a genetic approach, we recently identified Niemann-Pick C1-Like 1 (NPC1L1) as a critical mediator of cholesterol absorption and an essential component of the ezetimibe-sensitive pathway. To determine whether NPC1L1 is the direct molecular target of ezetimibe, we have developed a binding assay and shown that labeled ezetimibe glucuronide binds specifically to a single site in brush border membranes and to human embryonic kidney 293 cells expressing NPC1L1.

View Article and Find Full Text PDF

Melanin concentrating hormone (MCH) is involved in regulation of food intake and energy homeostasis. Antagonists of the MCH receptor are expected to affect food intake and weight gain, making MCH-R1 an attractive target for obesity treatment. Herein, we report the discovery of a novel, orally active series of MCH-R1 antagonists that exhibit in vivo efficacy in rodent obesity models.

View Article and Find Full Text PDF