Aberrant high-density lipoprotein (HDL) function is implicated in inflammation-associated pathologies. While HDL ABCA1-mediated reverse cholesterol and phospholipid transport are well described, the movement of pro-/anti-inflammatory lipids has not been explored. HDL phospholipids are the largest reservoir of circulating arachidonic acid-derived oxylipins.
View Article and Find Full Text PDFLipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear.
View Article and Find Full Text PDFHeart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation.
View Article and Find Full Text PDFOxylipins are produced enzymatically from polyunsaturated fatty acids, are abundant in triglyceride-rich lipoproteins (TGRLs), and mediate inflammatory processes. Inflammation elevates TGRL concentrations, but it is unknown if the fatty acid and oxylipin compositions change. In this study, we investigated the effect of prescription ω-3 acid ethyl esters (P-OM3; 3.
View Article and Find Full Text PDFA surge in the prevalence of obesity and metabolic syndrome, which promote systemic inflammation, underlies an increase in cardiometabolic disease. Free fatty acid receptor 4 is a nutrient sensor for long-chain fatty acids, like ω3-polyunsaturated fatty acids (ω3-PUFAs), that attenuates metabolic disease and resolves inflammation. Clinical trials indicate ω3-PUFAs are cardioprotective, and this review discusses the mechanistic links between ω3-PUFAs, free fatty acid receptor 4, and attenuation of cardiometabolic disease.
View Article and Find Full Text PDFAims: Free fatty acid receptor 4 (Ffar4) is a G-protein-coupled receptor for endogenous medium-/long-chain fatty acids that attenuates metabolic disease and inflammation. However, the function of Ffar4 in the heart is unclear. Given its putative beneficial role, we hypothesized that Ffar4 would protect the heart from pathologic stress.
View Article and Find Full Text PDFG protein-coupled receptors that signal through Gα (G receptors), such as α-adrenergic receptors (α-ARs) or angiotensin receptors, share a common proximal signaling pathway that activates phospholipase Cβ1 (PLCβ1), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP) to produce inositol 1,4,5-trisphosphate (IP) and diacylglycerol. Despite these common proximal signaling mechanisms, G receptors produce distinct physiological responses, yet the mechanistic basis for this remains unclear. In the heart, G receptors are thought to induce myocyte hypertrophy through a mechanism termed excitation-transcription coupling, which provides a mechanistic basis for compartmentalization of calcium required for contraction IP-dependent intranuclear calcium required for hypertrophy.
View Article and Find Full Text PDF