Publications by authors named "Brian Glancy"

Skeletal muscle activation using optogenetics has emerged as a promising technique for inducing noninvasive muscle contraction and assessing muscle function both in vivo and in vitro. Transgenic mice overexpressing the optogenetic fusion protein, Channelrhodopsin 2-EYFP (ChR2-EYFP) in skeletal muscle are widely used; however, overexpression of fluorescent proteins can negatively impact the functionality of activable tissues. In this study, we characterized the contractile properties of ChR2-EYFP skeletal muscle and introduced the ChR2-only mouse model that expresses light-responsive ChR2 without the fluorescent EYFP in their skeletal muscles.

View Article and Find Full Text PDF

Cardiac troponin I (cTnI) is a key regulator of cardiomyocyte contraction. However, its role in mitochondria is unknown. Here we show that cTnI localized to mitochondria in the heart, inhibited mitochondrial functions when stably expressed in noncardiac cells and increased the opening of the mitochondrial permeability transition pore under oxidative stress.

View Article and Find Full Text PDF

Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs.

View Article and Find Full Text PDF

By satisfying bioenergetic demands, generating biomass, and providing metabolites serving as cofactors for chromatin modifiers, metabolism regulates adult stem cell biology. Here, we report that a branch of glycolysis, the serine biosynthesis pathway (SBP), is activated in regenerating muscle stem cells (MuSCs). Gene inactivation and metabolomics revealed that Psat1, one of the three SBP enzymes, controls MuSC activation and expansion of myogenic progenitors through production of the metabolite α-ketoglutarate (α-KG) and α-KG-generated glutamine.

View Article and Find Full Text PDF

Skeletal muscle cellular development requires the integrated assembly of mitochondria and other organelles adjacent to the sarcomere in support of muscle contractile performance. However, it remains unclear how interactions among organelles and with the sarcomere relates to the development of muscle cell function. Here, we combine 3D volume electron microscopy, proteomic analyses, and live cell functional imaging to investigate the postnatal reorganization of mitochondria-organelle interactions in skeletal muscle.

View Article and Find Full Text PDF

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein.

View Article and Find Full Text PDF

Age-related atrophy of skeletal muscle, is characterized by loss of mass, strength, endurance, and oxidative capacity during aging. Notably, bioenergetics and protein turnover studies have shown that mitochondria mediate this decline in function. Although exercise has been the only therapy to mitigate sarcopenia, the mechanisms that govern how exercise serves to promote healthy muscle aging are unclear.

View Article and Find Full Text PDF

This study, utilizing SBF-SEM, reveals structural alterations in mitochondria and myofibrils in human heart failure (HF). Mitochondria in HF show changes in structure, while myofibrils exhibit increased cross-sectional area and branching. Metabolomic and lipidomic analyses indicate concomitant dysregulation in key pathways.

View Article and Find Full Text PDF

Mitochondrial calcium concentration ([Ca ] ) plays an essential role in bioenergetics, and loss of [Ca ] homeostasis can trigger diseases and cell death in numerous cell types. Ca uptake into mitochondria occurs via the mitochondrial Ca uniporter (MCU), which is regulated by three mitochondrial Ca uptake (MICU) proteins localized in the intermembrane space, MICU1, 2, and 3. We generated a mouse model of systemic MICU3 ablation and examined its physiological role in skeletal muscle.

View Article and Find Full Text PDF

During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized.

View Article and Find Full Text PDF

Mitochondria respond to metabolic demands of the cell and to incremental damage, in part, through dynamic structural changes that include fission (fragmentation), fusion (merging of distinct mitochondria), autophagic degradation (mitophagy), and biogenic interactions with the endoplasmic reticulum (ER). High resolution study of mitochondrial structural and functional relationships requires rapid preservation of specimens to reduce technical artifacts coupled with quantitative assessment of mitochondrial architecture. A practical approach for assessing mitochondrial fine structure using two dimensional and three dimensional high-resolution electron microscopy is presented, and a systematic approach to measure mitochondrial architecture, including volume, length, hyperbranching, cristae morphology, and the number and extent of interaction with the ER is described.

View Article and Find Full Text PDF

Various intracellular degradation organelles, including autophagosomes, lysosomes, and endosomes, work in tandem to perform autophagy, which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. This paper aims to describe an approach to reproducibly identify and distinguish subcellular structures involved in macroautophagy.

View Article and Find Full Text PDF

Volume electron microscopy provides a powerful approach to investigating physical connectivity within biological systems. In an article in this issue of Cell Systems, Conrad and Narayan overcome a major hurdle in volume electron microscopy by developing "MitoNet," a broadly applicable model for labeling individual mitochondria across volume electron microscopy datasets.

View Article and Find Full Text PDF

Mitochondrial networks provide coordinated energy distribution throughout muscle cells. However, pathways specifying mitochondrial networks are incompletely understood and it is unclear how they might affect contractile fiber-type. Here, we show that natural energetic demands placed on Drosophila melanogaster muscles yield native cell-types among which contractile and mitochondrial network-types are regulated differentially.

View Article and Find Full Text PDF

Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration in flies, mice, and humans.

View Article and Find Full Text PDF

The heart meets the high energy demands of constant muscle contraction and calcium cycling primarily through the conversion of fatty acids into adenosine triphosphate (ATP) by a large volume of mitochondria. As such, the spatial relationships among lipid droplets (LDs), mitochondria, the sarcotubular system and the contractile apparatus are critical to the efficient distribution of energy within the cardiomyocyte. However, the connectivity among components of the cardiac cellular energy distribution system during postnatal development remains unclear.

View Article and Find Full Text PDF

Myocardial ischemia has long-lasting negative impacts on cardiomyocyte mitochondrial ATP production. However, the location(s) of damage to the oxidative phosphorylation pathway responsible for altered mitochondrial function is unclear. Mitochondrial reactive oxygen species (ROS) production increases following ischemia, but the specific factors controlling this increase are unknown.

View Article and Find Full Text PDF

Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear.

View Article and Find Full Text PDF

Mitochondria and lipid droplets in the insulin resistant skeletal muscle of type 2 diabetic individuals have both been heavily investigated independently and are characterized by more fragmented, dysfunctional mitochondrial networks and larger lipid droplets compared to skeletal muscle of healthy individuals. Specialized contacts between mitochondrial and lipid droplet membranes are known to decrease in diabetic muscle, though it remains unclear how energy transfer at the remaining mitochondria-lipid droplet contact sites may be altered by type 2 diabetes. The purpose of this review is to highlight recent data on mitochondrial structure and function and lipid droplet dynamics in type 2 diabetic skeletal muscle and to underscore the need for more detailed investigations into the functional nature of mitochondria-lipid droplet interactions in type 2 diabetes.

View Article and Find Full Text PDF

High-resolution 3D images of organelles are of paramount importance in cellular biology. Although light microscopy and transmission electron microscopy (TEM) have provided the standard for imaging cellular structures, they cannot provide 3D images. However, recent technological advances such as serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam scanning electron microscopy (FIB-SEM) provide the tools to create 3D images for the ultrastructural analysis of organelles.

View Article and Find Full Text PDF

Across different cell types and within single cells, mitochondria are heterogeneous in form and function. In skeletal muscle cells, morphologically and functionally distinct subpopulations of mitochondria have been identified, but the mechanisms by which the subcellular specialization of mitochondria contributes to energy homeostasis in working muscles remains unclear. Here, we discuss the current data regarding mitochondrial heterogeneity in skeletal muscle cells and highlight potential new lines of inquiry that have emerged due to advancements in cellular imaging technologies.

View Article and Find Full Text PDF

Transmission electron microscopy (TEM) is widely used as an imaging modality to provide high-resolution details of subcellular components within cells and tissues. Mitochondria and endoplasmic reticulum (ER) are organelles of particular interest to those investigating metabolic disorders. A straightforward method for quantifying and characterizing particular aspects of these organelles would be a useful tool.

View Article and Find Full Text PDF

The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review.

View Article and Find Full Text PDF