Publications by authors named "Brian Gerardot"

Abstract: Interlayer excitons (IXs), composed of electron and hole states localized in different layers, excel in bilayers composed of atomically thin van der Waals materials such as semiconducting transition-metal dichalcogenides (TMDs) due to drastically enlarged exciton binding energies, exciting spin-valley properties, elongated lifetimes, and large permanent dipoles. The latter allows modification by electric fields and the study of thermalized bosonic quasiparticles, from the single particle level to interacting degenerate dense ensembles. Additionally, the freedom to combine bilayers of different van der Waals materials without lattice or relative twist-angle constraints leads to layer-hybridized and Moiré excitons, which can be widely engineered.

View Article and Find Full Text PDF
Article Synopsis
  • The properties of excitons, crucial to their behavior in materials, depend on factors like spin, valley, and energy, and can be modified through the stacking of layers in van der Waals materials.
  • In bi- and tri-layer 2H-MoSe crystals, interlayer excitons can be electrically manipulated, resulting in unique coupling with intralayer excitons and enabling enhanced optical properties.
  • The study demonstrates significant tunability of exciton characteristics, like dipole strength and energy levels, while allowing for manipulation of spin and valley attributes, making multilayer 2H-MoSe an exciting platform for advanced research in light-matter interactions.
View Article and Find Full Text PDF

Quantum key distribution with solid-state single-photon emitters is gaining traction due to their rapidly improving performance and compatibility with future quantum networks. Here we emulate a quantum key distribution scheme with quantum-dot-generated single photons frequency-converted to 1550 nm, achieving count rates of 1.6 MHz with [Formula: see text] and asymptotic positive key rates over 175 km of telecom fibre.

View Article and Find Full Text PDF

Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations.

View Article and Find Full Text PDF

Photon-mediated interactions between atoms can arise via coupling to a common electromagnetic mode or by quantum interference. Here, we probe the role of coherence in cooperative emission arising from two distant but indistinguishable solid-state emitters because of path erasure. The primary signature of cooperative emission, the emergence of "bunching" at zero delay in an intensity correlation experiment, is used to characterize the indistinguishability of the emitters, their dephasing, and the degree of correlation in the joint system that can be coherently controlled.

View Article and Find Full Text PDF

Moiré patterns with a superlattice potential can be formed by vertically stacking two layered materials with a relative twist or lattice constant mismatch. In transition metal dichalcogenide-based systems, the moiré potential landscape can trap interlayer excitons (IXs) at specific atomic registries. Here, we report that spatially isolated trapped IXs in a molybdenum diselenide/tungsten diselenide heterobilayer device provide a sensitive optical probe of carrier filling in their immediate environment.

View Article and Find Full Text PDF

Efficient on-chip integration of single-photon emitters imposes a major bottleneck for applications of photonic integrated circuits in quantum technologies. Resonantly excited solid-state emitters are emerging as near-optimal quantum light sources, if not for the lack of scalability of current devices. Current integration approaches rely on cost-inefficient individual emitter placement in photonic integrated circuits, rendering applications impossible.

View Article and Find Full Text PDF

Van der Waals heterostructures offer attractive opportunities to design quantum materials. For instance, transition metal dichalcogenides (TMDs) possess three quantum degrees of freedom: spin, valley index and layer index. Furthermore, twisted TMD heterobilayers can form moiré patterns that modulate the electronic band structure according to the atomic registry, leading to spatial confinement of interlayer excitons (IXs).

View Article and Find Full Text PDF

Van der Waals materials offer a wide range of atomic layers with unique properties that can be easily combined to engineer novel electronic and photonic devices. A missing ingredient of the van der Waals platform is a two-dimensional crystal with naturally occurring out-of-plane luminescent dipole orientation. Here we measure the far-field photoluminescence intensity distribution of bulk InSe and two-dimensional InSe, WSe and MoSe.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have demonstrated gate-tunable quantum tunneling in a van der Waals (vdW) heterostructure featuring a transition metal dichalcogenide quantum dot and graphene, utilizing an atomically thin hexagonal boron nitride tunnel barrier.
  • This system allows for the controlled loading of single electrons or holes, leading to the formation of hybrid excitons that combine localized and delocalized states due to strong spin-conserving tunneling.
  • The study provides a basis for developing advanced devices to explore new physics, like Kondo effects, or for isolating quantum bits in vdW materials.
View Article and Find Full Text PDF

We present a detailed study of the second order nonlinearity of 2D (mono-atomic layer) dichalcogenide MoS, both in the visible and in the IR regime, and test its potential for spontaneous parametric down-conversion (SPDC), the amplification of vacuum fluctuations mediated by optical nonlinearity. We develop a model of SPDC from a deeply subwavelength nonlinear medium, where phase matching conditions are completely relaxed, and make predictions about the rate of emitted photons, their momentum, polarisation and spectrum. We show that detection in the visible spectral region is hindered by the strong photoluminescence background.

View Article and Find Full Text PDF

Images perceived by human eyes or recorded by cameras are usually optical patterns with spatially varying intensity or color profiles. In addition to the intensity and color, the information of an image can be encoded in a spatially varying distribution of phase or polarization state. Interestingly, such images might not be able to be directly viewed by human eyes or cameras because they may exhibit highly uniform intensity profiles.

View Article and Find Full Text PDF

An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions.

View Article and Find Full Text PDF

An outstanding challenge in quantum photonics is scalability, which requires positioning of single quantum emitters in a deterministic fashion. Site positioning progress has been made in established platforms including defects in diamond and self-assembled quantum dots, albeit often with compromised coherence and optical quality. The emergence of single quantum emitters in layered transition metal dichalcogenide semiconductors offers new opportunities to construct a scalable quantum architecture.

View Article and Find Full Text PDF

A facile metasurface approach is shown to realize polarization-controllable multichannel superpositions of orbital angular momentum (OAM) states with various topological charges. By manipulating the polarization state of the incident light, four kinds of superpositions of OAM states are realized using a single metasurface consisting of space-variant arrays of gold nanoantennas.

View Article and Find Full Text PDF

The miniaturization of measurement systems currently used to characterize the polarization state of light is limited by the bulky optical components used such as polarizers and waveplates. We propose and experimentally demonstrate a simple and compact approach to measure the ellipticity and handedness of the polarized light using an ultrathin (40 nm) gradient metasurface. A completely polarized light beam is decomposed into a left circularly polarized beam and a right circularly polarized beam, which are steered in two directions by the metasurface consisting of nanorods with spatially varying orientations.

View Article and Find Full Text PDF

We report high resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. The absorption dip signifying the formation of a dark state exhibits an atomic physicslike dip width of just 10 MHz. We observe fluctuations in the absolute frequency of the absorption dip, evidence of very slow spin dephasing.

View Article and Find Full Text PDF

Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale.

View Article and Find Full Text PDF

We investigate the effect of uniaxial stress on InGaAs quantum dots in a charge tunable device. Using Coulomb blockade and photoluminescence, we observe that significant tuning of single particle energies (≈-0.22 meV/MPa) leads to variable tuning of exciton energies (+18 to -0.

View Article and Find Full Text PDF

Semiconductors have uniquely attractive properties for electronics and photonics. However, it has been difficult to find a highly coherent quantum state in a semiconductor for applications in quantum sensing and quantum information processing. We report coherent population trapping, an optical quantum interference effect, on a single hole.

View Article and Find Full Text PDF

We demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance.

View Article and Find Full Text PDF

The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10(4) to 10(6) spins of the host nuclei in the quantum dot.

View Article and Find Full Text PDF