Unlabelled: We studied the interaction between VEGF and BMP2 during bone formation and bone healing. Results indicate that VEGF antagonist inhibited BMP2-elicited bone formation, whereas the delivery of exogenous VEGF enhanced BMP2-induced bone formation and bone healing through modulation of angiogenesis.
Introduction: Angiogenesis is closely associated with bone formation during normal bone development and is important for the bone formation elicited by BMP4.
Background: Our previous studies have shown that muscle-derived cells, including a population of muscle stem cells, transduced with a retroviral vector expressing bone morphogenetic protein 4 (BMP4) can improve the healing of critical-size calvarial defects. However, we did not evaluate the functionality of the healed bone. The purpose of this study was to determine whether primary muscle-derived cells transduced with retroBMP4 can heal a long bone defect both structurally and functionally.
View Article and Find Full Text PDFThe aims of this study were to explore the possibility of improving the design of self-inactivating (SI) retroviral vectors and to develop an SI vector that would allow optimal tet-on-regulated therapeutic gene expression. To minimize any interference between the viral promoter and the inducible promoter, we deleted different regulatory elements in the 3'LTR and examined their effects on transgene expression in transfected or transduced cells. In transfected cells, such deletions reduced the transgene expression.
View Article and Find Full Text PDFMuscle-based gene therapy and tissue engineering hold great promise for improving bone healing. However, the relative advantage of muscle-derived stem cells (MDSCs) or primary muscle-derived cells (MDCs) remains to be defined. We compared the ability of MDSCs and different subpopulations of MDCs (PP1 and PP3) to induce bone formation via ex vivo gene therapy.
View Article and Find Full Text PDFUnlabelled: In this study, we compared the use of primary muscle-derived osteoprogenitor cells (PP6 cells) for the delivery of BMP4 to improve bone healing to that of muscle-derived non-osteoprogenitor cells (PP1 cells). Surprisingly, the use of PP1 cells resulted in an improved outcome because of the lack of adverse responses to BMP4 involving cell differentiation, proliferation, and apoptosis.
Introduction: Although researchers frequently opt to use osteogenic cells for osteogenic bone morphogenetic protein (BMP)-based ex vivo gene therapy to improve bone healing, it remains unclear whether the osteogenic potential of a cellular vehicle affects the outcome of bone healing applications.
Background: The heterotopic ossification of muscles, tendons, and ligaments is a common problem faced by orthopaedic surgeons. We investigated the ability of Noggin (a BMP [bone morphogenetic protein] antagonist) to inhibit heterotopic ossification.
Methods: Part 1: A retroviral vector carrying the gene encoding human Noggin was developed and used to transduce muscle-derived stem cells.
We investigated the interaction between angiogenic and osteogenic factors in bone formation and bone healing with ex vivo gene therapy using muscle-derived stem cells genetically engineered to express human bone morphogenetic protein-4 (BMP4), VEGF, or VEGF-specific antagonist (soluble Flt1). Our results show that although VEGF alone did not improve bone regeneration, it acted synergistically with BMP4 to increase recruitment of mesenchymal stem cells, to enhance cell survival, and to augment cartilage formation in the early stages of endochondral bone formation. These early effects, coupled with accelerated cartilage resorption, eventually led to a significant enhancement of bone formation and bone healing.
View Article and Find Full Text PDFRecent advances in molecular biology have led the way for novel approaches to improve bone healing. The ideal growth factor, vector, and delivery systems for producing bone in an immune competent animal model, however, have yet to be identified. Using a retrovirus encoding BMP4 and recently isolated muscle-derived stem cells (MDSCs), we demonstrated the following: MDSCs undergo osteogenic differentiation in response to BMP4 in a dose-dependent manner; retrovirus encoding BMP4 can efficiently transduce MDSCs, both enhancing osteogenic differentiation and inhibiting myogenic differentiation; transduced MDSCs can produce high levels of functional BMP4 as they differentiate toward an osteogenic lineage; allogeneic transduced MDSCs can induce robust de novo bone formation in immunocompetent mice despite the presence of an immune reaction, demonstrating the ability of this retroviral-BMP4-muscle construct to provide sufficient stimuli for osteoinduction in vivo; MDSCs appear to deliver BMP4, respond to the human BMP4 in an autocrine manner, and actively participate in bone formation, thus serving both osteoinductive and osteoproductive roles; and the BMP4-expressing MDSCs can induce bone formation and improve bone healing in a critical-sized skull defect in immunocompetent mice.
View Article and Find Full Text PDF