Publications by authors named "Brian G Fox"

Article Synopsis
  • * The study introduces Sensor-seq, a high-throughput platform that allows for the design and identification of aTF biosensors that can bind to a variety of non-native ligands, testing 17,737 variants of aTF TtgR against multiple compounds.
  • * Sensor-seq successfully finds biosensors with high performance for various ligands and showcases their practical use through cell-free detection systems for specific drugs, enhancing the ability to create new biosensors beyond natural limitations.
View Article and Find Full Text PDF

Here, we report the draft genome sequence of sp. CAP02, which metabolizes caprolactam as a sole source of carbon and nitrogen. This bacterium was isolated from Dane County Landfill Site No.

View Article and Find Full Text PDF

In mammals, l-cysteine (Cys) homeostasis is maintained by the mononuclear nonheme iron enzyme cysteine dioxygenase (CDO), which oxidizes Cys to cysteine sulfinic acid. CDO contains a rare post-translational modification, involving the formation of a thioether cross-link between a Cys residue at position 93 ( CDO numbering) and a nearby tyrosine at position 157 (Cys-Tyr cross-link). As-isolated CDO contains both the cross-linked and non-cross-linked isoforms, and formation of the Cys-Tyr cross-link during repeated enzyme turnover increases CDO's catalytic efficiency by ∼10-fold.

View Article and Find Full Text PDF
Article Synopsis
  • Allosteric transcription factors (aTFs) are important tools for detecting various molecules but designing them to work with new compounds is difficult due to potential disruptions in their allosteric properties.
  • The researchers developed a high-throughput platform called Sensor-seq that screened over 17,000 variants of the aTF TtgR to find biosensors that can bind to a range of non-native and native ligands.
  • The study resulted in the identification of new biosensors with excellent specificity and effectiveness, and practical applications were demonstrated through cell-free detection systems for naltrexone and quinine.
View Article and Find Full Text PDF

Kelp is an abundant, farmable biomass-containing laminarin and alginate as major polysaccharides, providing an excellent model substrate to study their deconstruction by simple enzyme mixtures. Our previous study showed strong reactivity of the glycoside hydrolase family 55 during hydrolysis of purified laminarin, raising the question of its reactivity with intact kelp. In this study, we determined that a combination of a single glycoside hydrolase family 55 β-1,3-exoglucanase with a broad-specificity alginate lyase from the polysaccharide lyase family 18 gives efficient hydrolysis of untreated kelp to a mixture of simple sugars, that is, glucose, gentiobiose, mannitol-end glucose, and mannuronic and guluronic acids and their soluble oligomers.

View Article and Find Full Text PDF
Article Synopsis
  • Cysteine dioxygenase (CDO) is an enzyme that converts cysteine into cysteine sulfinic acid, with a unique crosslink enhancing its catalytic efficiency.
  • The study focused on creating a variant of bacterial CDO (G82C) to test if a single DNA mutation could allow crosslink formation, showing that it indeed can form the crosslink but with lower efficiency than the wild-type enzyme.
  • Bioinformatics revealed many potential crosslinked CDOs in Gram-negative pathogenic bacteria, indicating a broader biological significance for this crosslink formation.
View Article and Find Full Text PDF

Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability.

View Article and Find Full Text PDF

Polyhydroxyalkanoate (PHA) production from plant biomass is an ideal way to realize sustainable PHA-based bioplastic. The present study demonstrated consolidated bioconversion of plant biomass to PHA by co-culturing two specialized bacteria, cellulolytic Streptomyces sp. SirexAA-E and PHA producing Priestia megaterium.

View Article and Find Full Text PDF

Chemically labile ester linkages can be introduced into lignin by incorporation of monolignol conjugates, which are synthesized in planta by acyltransferases that use a coenzyme A (CoA) thioester donor and a nucleophilic monolignol alcohol acceptor. The presence of these esters facilitates processing and aids in the valorization of renewable biomass feedstocks. However, the effectiveness of this strategy is potentially limited by the low steady-state levels of aromatic acid thioester donors in plants.

View Article and Find Full Text PDF

Lactones are prevalent in biological and industrial settings, yet there is a lack of information regarding enzymes used to metabolize these compounds. One compound, γ-valerolactone (GVL), is used as a solvent to dissolve plant cell walls into sugars and aromatic molecules for subsequent microbial conversion to fuels and chemicals. Despite the promise of GVL as a renewable solvent for biomass deconstruction, residual GVL can be toxic to microbial fermentation.

View Article and Find Full Text PDF

Plant BAHD acyltransferases perform a wide range of enzymatic tasks in primary and secondary metabolism. Acyl-CoA monolignol transferases, which couple a CoA substrate to a monolignol creating an ester linkage, represent a more recent class of such acyltransferases. The resulting conjugates may be used for plant defense but are also deployed as important "monomers" for lignification, in which they are incorporated into the growing lignin polymer chain.

View Article and Find Full Text PDF

Poplar (Populus) lignin is naturally acylated with p-hydroxybenzoate ester moieties. However, the enzyme(s) involved in the biosynthesis of the monolignol-p-hydroxybenzoates have remained largely unknown. Here, we performed an in vitro screen of the Populus trichocarpa BAHD acyltransferase superfamily (116 genes) using a wheatgerm cell-free translation system and found five enzymes capable of producing monolignol-p-hydroxybenzoates.

View Article and Find Full Text PDF

We report the crystal structure of the mammalian non-heme iron enzyme cysteamine dioxygenase (ADO) at 1.9 Å resolution, which shows an Fe and three-histidine (3-His) active site situated at the end of a wide substrate access channel. The open approach to the active site is consistent with the recent discovery that ADO catalyzes not only the conversion of cysteamine to hypotaurine but also the oxidation of N-terminal cysteine (Nt-Cys) peptides to their corresponding sulfinic acids as part of the eukaryotic N-degron pathway.

View Article and Find Full Text PDF

Thiol dioxygenases (TDOs) are a class of metalloenzymes that oxidize various thiol-containing substrates to their corresponding sulfinic acids. Originally established by X-ray crystallography for cysteine dioxygenase (CDO), all TDOs are believed to contain a 3-histidine facial triad that coordinates the necessary Fe(II) cofactor. However, very little additional information is available for cysteamine dioxygenase (ADO), the only other mammalian TDO besides CDO.

View Article and Find Full Text PDF

The cellulolytic insect symbiont bacterium sp. strain SirexAA-E secretes a suite of arbohydrate-ctive enymes (CAZymes), which are involved in the degradation of various polysaccharides in the plant cell wall, in response to the available carbon sources. Here, we examined a poorly understood response of this bacterium to mannan, one of the major plant cell wall components.

View Article and Find Full Text PDF

Enzyme performance is critical to the future bioeconomy based on renewable plant materials. Plant biomass can be efficiently hydrolyzed by multifunctional cellulases (MFCs) into sugars suitable for conversion into fuels and chemicals, and MFCs fall into three functional categories. Recent work revealed MFCs with broad substrate specificity, dual exo-activity/endo-activity on cellulose, and intramolecular synergy, among other novel characteristics.

View Article and Find Full Text PDF

Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)-linked oligo- and polysaccharides.

View Article and Find Full Text PDF

Thiol dioxygenases are mononuclear non-heme Fe-dependent metalloenzymes that initiate the oxidative catabolism of thiol-containing substrates to their respective sulfinates. Cysteine dioxygenase (CDO), the best characterized mammalian thiol dioxygenase, contains a three-histidine (3-His) coordination environment rather than the 2-His-1-carboxylate facial triad seen in most mononuclear non-heme Fe enzymes. A similar 3-His active site is found in the bacterial thiol dioxygenase 3-mercaptopropionate dioxygenase (MDO), which converts 3-mercaptopropionate into 3-sulfinopropionic acid as part of the bacterial sulfur metabolism pathway.

View Article and Find Full Text PDF

Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria.

View Article and Find Full Text PDF

Enzymes selectively hydrolyze the carbohydrate fractions of lignocellulosic biomass into corresponding sugars, but these processes are limited by low yields and slow catalytic turnovers. Under certain conditions, the rates and yields of enzymatic sugar production can be increased by pretreating biomass using solvents, heat and dilute acid catalysts. However, the mechanistic details underlying this behavior are not fully elucidated, and designing effective pretreatment strategies remains an empirical challenge.

View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent oxidative enzymes, boost the degradation of polysaccharides such as cellulose, chitin, and others. While experimental methods are used to validate LPMO function, a computational method that can aid experimental methods and provide fast and accurate classification of sequences into LPMOs and its families would be an important step towards understanding the breadth of contributions these enzymes make in deconstruction of recalcitrant polysaccharides. In this study, we developed a machine learning-based tool called PreDSLpmo that employs two different approaches to functionally classify protein sequences into the major LPMO families (AA9 and AA10).

View Article and Find Full Text PDF

Some glycoside hydrolases have broad specificity for hydrolysis of glycosidic bonds, potentially increasing their functional utility and flexibility in physiological and industrial applications. To deepen the understanding of the structural and evolutionary driving forces underlying specificity patterns in glycoside hydrolase family 5, we quantitatively screened the activity of the catalytic core domains from subfamily 4 (GH5_4) and closely related enzymes on four substrates: lichenan, xylan, mannan, and xyloglucan. Phylogenetic analysis revealed that GH5_4 consists of three major clades, and one of these clades, referred to here as clade 3, displayed average specific activities of 4.

View Article and Find Full Text PDF

As a major component of plant cell walls, lignin is a potential renewable source of valuable chemicals. Several sphingomonad bacteria have been identified that can break the β-aryl ether bond connecting most phenylpropanoid units of the lignin heteropolymer. Here, we tested three sphingomonads predicted to be capable of breaking the β-aryl ether bond of the dimeric aromatic compound guaiacylglycerol-β-guaiacyl ether (GGE) and found that metabolizes GGE at one of the fastest rates thus far reported.

View Article and Find Full Text PDF

Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjme9jdeotbjg617tnorn65ti9lonlsfi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once