Publications by authors named "Brian Fischer"

Barn owls enable investigation of neural mechanisms underlying stimulus selection of concurrent stimuli. The audiovisual space map in the optic tectum (OT), avian homolog of the superior colliculus, encodes relative strength of concurrent auditory stimuli through spike response rate and interneuronal spike train synchrony (STS). Open questions remain regarding stimulus selection in downstream forebrain regions lacking topographic coding of auditory space, including the functional consequences of interneuronal STS on interregional signaling.

View Article and Find Full Text PDF

Bayesian models have proven effective in characterizing perception, behavior, and neural encoding across diverse species and systems. The neural implementation of Bayesian inference in the barn owl's sound localization system and behavior has been previously explained by a non-uniform population code model. This model specifies the neural population activity pattern required for a population vector readout to match the optimal Bayesian estimate.

View Article and Find Full Text PDF

Space-specific neurons in the owl's midbrain form a neural map of auditory space, which supports sound-orienting behavior. Previous work proposed that a population vector (PV) readout of this map, implementing statistical inference, predicts the owl's sound localization behavior. This model also predicts the frontal localization bias normally observed and how sound-localizing behavior changes when the signal-to-noise ratio varies, based on the spread of activity across the map.

View Article and Find Full Text PDF

Emergent response properties of sensory neurons depend on circuit connectivity and somatodendritic processing. Neurons of the barn owl's external nucleus of the inferior colliculus (ICx) display emergence of spatial selectivity. These neurons use interaural time difference (ITD) as a cue for the horizontal direction of sound sources.

View Article and Find Full Text PDF

Background: Although school garden programs have been shown to improve dietary behaviors, there has not been a cluster-randomized controlled trial (RCT) conducted to examine the effects of school garden programs on obesity or other health outcomes. The goal of this study was to evaluate the effects of a one-year school-based gardening, nutrition, and cooking intervention (called Texas Sprouts) on dietary intake, obesity outcomes, and blood pressure in elementary school children.

Methods: This study was a school-based cluster RCT with 16 elementary schools that were randomly assigned to either the Texas Sprouts intervention (n = 8 schools) or to control (delayed intervention, n = 8 schools).

View Article and Find Full Text PDF

A neural code adapted to the statistical structure of sensory cues may optimize perception. We investigated whether interaural time difference (ITD) statistics inherent in natural acoustic scenes are parameters determining spatial discriminability. The natural ITD rate of change across azimuth (ITDrc) and ITD variability over time (ITDv) were combined in a Fisher information statistic to assess the amount of azimuthal information conveyed by this sensory cue.

View Article and Find Full Text PDF

A major cue to infer sound direction is the difference in arrival time of the sound at the left and right ears, called interaural time difference (ITD). The neural coding of ITD and its similarity across species have been strongly debated. In the barn owl, an auditory specialist relying on sound localization to capture prey, ITDs within the physiological range determined by the head width are topographically represented at each frequency.

View Article and Find Full Text PDF

Extracorporeal membrane oxygenation (ECMO) is an important life-saving technology for patients with severe acute respiratory distress syndrome (ARDS). Unfortunately, ECMO has been traditionally contraindicated in patients with hemorrhagic neurologic diseases. The recent improvement in ECMO devices, increased utilization and experience with venovenous ECMO technologies among healthcare teams, and the use of ECMO without anticoagulation has expanded the potential populations that may benefit from ECMO.

View Article and Find Full Text PDF

Auditory perception depends on multi-dimensional information in acoustic signals that must be encoded by auditory nerve fibers (ANF). These dimensions are represented by filters with different frequency selectivities. Multiple models have been suggested; however, the identification of relevant filters and type of interactions has been elusive, limiting progress in modeling the cochlear output.

View Article and Find Full Text PDF

The midbrain map of auditory space commands sound-orienting responses in barn owls. Owls precisely localize sounds in frontal space but underestimate the direction of peripheral sound sources. This bias for central locations was proposed to be adaptive to the decreased reliability in the periphery of sensory cues used for sound localization by the owl.

View Article and Find Full Text PDF

Tendon transfers are often performed in the foot and ankle. Recently, interference screws have been a popular choice owing to their ease of use and fixation strength. Considering the benefits, one disadvantage of such devices is laceration of the soft tissues by the implant threads during placement that potentially weaken the structural integrity of the grafts.

View Article and Find Full Text PDF

Integration of multiple sensory cues can improve performance in detection and estimation tasks. There is an open theoretical question of the conditions under which linear or nonlinear cue combination is Bayes-optimal. We demonstrate that a neural population decoded by a population vector requires nonlinear cue combination to approximate Bayesian inference.

View Article and Find Full Text PDF

Unlabelled: Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences neuronal responses and behavior in the owl's auditory system. We show that the firing rate and spatial selectivity changed with cue reliability due to the mechanisms generating the tuning to the sound localization cue.

View Article and Find Full Text PDF

Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time.

View Article and Find Full Text PDF

Bayesian models are often successful in describing perception and behavior, but the neural representation of probabilities remains in question. There are several distinct proposals for the neural representation of probabilities, but they have not been directly compared in an example system. Here we consider three models: a non-uniform population code where the stimulus-driven activity and distribution of preferred stimuli in the population represent a likelihood function and a prior, respectively; the sampling hypothesis which proposes that the stimulus-driven activity over time represents a posterior probability and that the spontaneous activity represents a prior; and the class of models which propose that a population of neurons represents a posterior probability in a distributed code.

View Article and Find Full Text PDF

The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space.

View Article and Find Full Text PDF

Interaural time differences (ITDs) are a main cue for sound localization and sound segregation. A dominant model to study ITD detection is the sound localization circuitry in the avian auditory brainstem. Neurons in nucleus laminaris (NL) receive auditory information from both ears via the avian cochlear nucleus magnocellularis (NM) and compare the relative timing of these inputs.

View Article and Find Full Text PDF

The suprachiasmatic nucleus (SCN) is required for the daily rhythm of plasma glucocorticoids; however, the independent contributions from oscillators within the different subregions of the SCN to the glucocorticoid rhythm remain unclear. Here, we use genetically and neurologically intact, forced desynchronized rats to test the hypothesis that the daily rhythm of the glucocorticoid, corticosterone, is regulated by both light responsive and light-dissociated circadian oscillators in the ventrolateral (vl-) and dorsomedial (dm-) SCN, respectively. We show that when the vlSCN and dmSCN are in maximum phase misalignment, the peak of the plasma corticosterone rhythm is shifted and the amplitude reduced; whereas, the peak of the plasma adrenocorticotropic hormone (ACTH) rhythm is also reduced, the phase is dissociated from that of the corticosterone rhythm.

View Article and Find Full Text PDF

In the brainstem, the auditory system diverges into two pathways that process different sound localization cues, interaural time differences (ITDs) and level differences (ILDs). We investigated the site where ILD is detected in the auditory system of barn owls, the posterior part of the lateral lemniscus (LLDp). This structure is equivalent to the lateral superior olive in mammals.

View Article and Find Full Text PDF

The physical arrangement of receptive fields (RFs) within neural structures is important for local computations. Nonuniform distribution of tuning within populations of neurons can influence emergent tuning properties, causing bias in local processing. This issue was studied in the auditory system of barn owls.

View Article and Find Full Text PDF

Tests for the identification of semen commonly involve the microscopic visualization of spermatozoa or assays for the presence of seminal markers such as acid phosphatase (AP) or prostate-specific antigen (PSA). Here, we describe the rapid stain identification kit for the identification of semen (RSID™-Semen), a lateral flow immunochromatographic strip test that uses two antihuman semenogelin monoclonal antibodies to detect the presence of semenogelin. The RSID™-Semen strip is specific for human semen, detecting <2.

View Article and Find Full Text PDF

Detecting interaural time difference (ITD) is crucial for sound localization. The temporal accuracy required to detect ITD, and how ITD is initially encoded, continue to puzzle scientists. A fundamental question is whether the monaural inputs to the binaural ITD detectors differ only in their timing, when temporal and spectral tunings are largely inseparable in the auditory pathway.

View Article and Find Full Text PDF

The owl captures prey using sound localization. In the classical model, the owl infers sound direction from the position of greatest activity in a brain map of auditory space. However, this model fails to describe the actual behavior.

View Article and Find Full Text PDF

With sexual assault evidence, the visualization of spermatozoa confirms that ejaculation has occurred. However, microscopic examination of spermatozoa is a laborious process and can sometimes result in sperm cells being overlooked. Here, we present the developmental validation of the SPERM HY-LITER™ kit, which contains a human sperm-specific mouse monoclonal antibody coupled to a fluorescent Alexa 488 dye.

View Article and Find Full Text PDF

The functional role of the low-frequency range (<3 kHz) in barn owl hearing is not well understood. Here, it was tested whether cochlear delays could explain the representation of interaural time difference (ITD) in this frequency range. Recordings were obtained from neurons in the core of the central nucleus of the inferior colliculus.

View Article and Find Full Text PDF