Publications by authors named "Brian Fee"

Article Synopsis
  • The human IRGM gene is associated with inflammatory conditions like sepsis and Crohn's disease, where decreased expression can lead to increased inflammatory markers in the body.
  • Prior research showed that changes in metabolism and mitochondrial functions are linked to increased inflammatory responses, but the exact mechanisms were unclear.
  • New findings revealed that type I interferon (IFN) production in macrophages is crucial for heightened cytokine levels due to IRGM deficiency, and novel pathways affecting mitochondrial function contribute to this inflammatory response.
View Article and Find Full Text PDF

Immunity Related GTPases (IRG) are a family of proteins produced during infection that regulate membrane remodeling events in cells, particularly autophagy and mitophagy. The human IRGM gene has been strongly associated with Crohn's disease and other inflammatory diseases through Genome-Wide Association studies. Absence of Irgm1 in mice prompts intestinal inflammation, autoimmunity, and impaired immune control of pathogenic bacteria and protozoa.

View Article and Find Full Text PDF

Gamma interferon (IFN-γ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii. Effector IRGs are loaded onto the -containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFN-γ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to .

View Article and Find Full Text PDF
Article Synopsis
  • Specialized mononuclear phagocyte populations play key roles in intestinal immunity, but their functions may differ between the small and large intestine due to anatomical and immunological differences.
  • Researchers identified two new subsets of colon-specific mononuclear phagocytes in mice: a macrophage subset and a dendritic cell subset that induces Th17 cells.
  • These colon-specific cells, characterized by the co-expression of CD24 and CD14 and dependence on the IRF4 transcription factor, play crucial roles in Th17 immunity, highlighting the distinct immune requirements of the colon compared to the small intestine.
View Article and Find Full Text PDF

Background: Multiple classes of oral therapy are available for the treatment of pulmonary arterial hypertension (PAH), but there is little to guide clinicians in choosing a specific regimen or therapeutic class. We aimed to investigate whether treatment-relevant blood biomarkers can predict therapy response in prevalent PAH patients.

Methods: This prospective cohort study longitudinally assessed biomarkers along the endothelin-1 (ET-1) and nitric oxide (cGMP, ADMA, SDMA, nitrite, and S-nitrosohemoglobin) pathways along with the cGMP/NT-proBNP ratio over 12 months in patients with WHO Group 1 PAH on oral PAH-specific therapies.

View Article and Find Full Text PDF

IRGM and its mouse orthologue Irgm1 are dynamin-like proteins that regulate vesicular remodeling, intracellular microbial killing, and pathogen immunity. IRGM dysfunction is linked to inflammatory bowel disease (IBD), and while it is thought that defective intracellular killing of microbes underscores IBD susceptibility, studies have yet to address how IRGM/Irgm1 regulates immunity to microbes relevant to intestinal inflammation. Here we find that loss of Irgm1 confers marked susceptibility to Citrobacter rodentium, a noninvasive intestinal pathogen that models inflammatory responses to intestinal bacteria.

View Article and Find Full Text PDF

Crohn's disease (CD) represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M () is an established risk allele in CD.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors. Unraveling the molecular and genetic complexity that determines GBM's pronounced migratory property could provide new options for therapeutic targeting that may significantly complement current surgical and chemoradiation therapy and alter the current poor outcome. In this study, we establish stable AJAP1 overexpressing glioma cells in order to examine in vivo tumor growth.

View Article and Find Full Text PDF

The immunity-related GTPases (IRGs) are a family of proteins that are induced by interferon (IFN)-γ and play pivotal roles in immune and inflammatory responses. IRGs ostensibly function as dynamin-like proteins that bind to intracellular membranes and promote remodeling and trafficking of those membranes. Prior studies have shown that loss of Irgm1 in mice leads to increased lethality to bacterial infections as well as enhanced inflammation to non-infectious stimuli; however, the mechanisms underlying these phenotypes are unclear.

View Article and Find Full Text PDF

Background: Regular gall bladder contraction reduces bile stasis and prevents gallstone formation. Intraduodenal administration of exogenous pancreatic secretory trypsin inhibitor-I (PSTI-I, also known as monitor peptide) causes cholecystokinin (CCK) secretion.

Design: We proposed that stimulation of CCK release by PSTI would produce gall bladder contraction and prevent gallstones in mice fed a lithogenic diet.

View Article and Find Full Text PDF

In a broad range of human cancers 1p36 has been a mutational hotspot which strongly suggests that the loss of tumor suppressor activity maps to this genomic region during tumorigenesis. Adherens junctional associated protein-1 (AJAP1; also known as Shrew1) was initially discovered as a novel transmembrane protein of adherent junctions in epithelial cells. Gene profiling showed AJAP1 on 1p36 is frequently lost or epigenetically silenced.

View Article and Find Full Text PDF

Aims: Down-regulation of AJAP1 in glioblastoma multiforme (GBM) has been reported. However, the expression profiles of AJAP1 in gliomas and the underlying mechanisms of AJAP1 function on invasion are still poorly understood.

Methods: The gene profiles of AJAP1 in glioma patients were studied among four independent cohorts.

View Article and Find Full Text PDF

Previous studies identified the frequent loss of adherens junction-associated protein 1 (AJAP1) expression in glioblastoma (GBM) and its correlation with worse survival. AJAP1 may suppress glioma cell migration, which plays an important role in tumor progression in malignant gliomas such as GBM. However, the role of AJAP1 in cell cycle arrest or apoptosis and resistance to chemotherapy remains unclear.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is produced by discrete endocrine cells in the proximal small intestine and is released following the ingestion of food. CCK is the primary hormone responsible for gallbladder contraction and has potent effects on pancreatic secretion, gastric emptying, and satiety. In addition to fats, digested proteins and aromatic amino acids are major stimulants of CCK release.

View Article and Find Full Text PDF

Endogenous trypsin inhibitors are synthesized, stored, and secreted by pancreatic acinar cells. It is believed that they play a protective role in the pancreas by inhibiting trypsin within the cell should trypsinogen become prematurely activated. Rodent trypsin inhibitors are highly homologous to human serine protease inhibitor Kazal-type 1 (SPINK1).

View Article and Find Full Text PDF

Monotherapies have proven largely ineffective for the treatment of glioblastomas, suggesting that increased patient benefit may be achieved by combining therapies. Two protumorigenic pathways known to be active in glioblastoma include RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/AKT/target of rapamycin (TOR). We investigated the efficacy of a combination of novel low molecular weight inhibitors LBT613 and RAD001 (everolimus), which were designed to target RAF and TOR, respectively.

View Article and Find Full Text PDF

The mouse mammary tumor virus (MMTV) promoter contains an element near its transcription initiation site that is recognized by a protein termed initiation site binding protein (ISBP). Spacing between the TATA box and the ISBP site is important for MMTV promoter function, as altered spacing results in heterogeneity in start site selection in vitro and in vivo. The sequence of the ISBP site is related to initiator elements common in many RNA polymerase II promoters.

View Article and Find Full Text PDF

The Drosophila eyes absent (eya) gene has a role in regulating cell death and/or differentiation and is expressed throughout development. We evaluated the transcripts and proteins encoded by one of the human homologues of Drosophila eya coined Eyes Absent 2 (EYA2). Interestingly, EYA2 was expressed in several neuroblastoma cell lines as four distinct transcripts having alternative 5'-ends, whereas only one EYA2 transcript was expressed in the normal human eye.

View Article and Find Full Text PDF

Genetic studies in Drosophila and mice have shown that eyes absent (eya) is an important and conserved transcriptional regulator of development. Along with eyeless/Pax6, sine oculis, and dachshund, eya genes function as master regulators in eye development and can induce ectopic eye formation. Furthermore, the loss-of-function mutants of these genes in the fly causes partial or complete loss of the compound eye, and this is associated with inappropriate apoptosis.

View Article and Find Full Text PDF