Objective: Weight regain after weight loss is common, and there is evidence to suggest negative effects on health because of weight cycling. This study sought to investigate the impact of weight regain in formerly obese mice on adipose tissue architecture and stromal cell function.
Methods: A diet-switch model was employed for obesity induction, weight loss, and weight regain in mice.
Adipose tissue derived chronic inflammation is a critical component of obesity induced type II diabetes. Major histocompatibility complex II (MHCII) mediated T cell activation within adipose tissue is one mechanism that contributes to this phenotype. However, the contribution of dendritic cells as professional antigen presenting cells in adipose issue has not previously been explored.
View Article and Find Full Text PDFObesity-related changes in adipose tissue leukocytes, in particular adipose tissue macrophages (ATMs) and dendritic cells (ATDCs), are implicated in metabolic inflammation, insulin resistance, and altered regulation of adipocyte function. We evaluated stromal cell and white adipose tissue (WAT) expansion dynamics with high fat diet (HFD) feeding for 3-56 days, quantifying ATMs, ATDCs, endothelial cells (ECs), and preadipocytes (PAs) in visceral epididymal WAT and subcutaneous inguinal WAT. To better understand mechanisms of the early response to obesity, we evaluated ATM proliferation and lipid accumulation.
View Article and Find Full Text PDFObjective: In addition to adipocytes, adipose tissue contains large numbers of immune cells. A wide range of evidence links the activity of these cells to regulation of adipocyte and systemic metabolic function. Bariatric surgery improves several aspects of metabolic derangements and at least some of these effects occur in a weight-loss independent manner.
View Article and Find Full Text PDFObesity causes dramatic proinflammatory changes in the adipose tissue immune environment, but relatively little is known regarding how this inflammation responds to weight loss (WL). To understand the mechanisms by which meta-inflammation resolves during WL, we examined adipose tissue leukocytes in mice after withdrawal of a high-fat diet. After 8 weeks of WL, mice achieved similar weights and glucose tolerance values as age-matched lean controls but showed abnormal insulin tolerance.
View Article and Find Full Text PDFDynamic changes of adipose tissue leukocytes, including adipose tissue macrophage (ATM) and adipose tissue dendritic cells (ATDCs), contribute to obesity-induced inflammation and metabolic disease. However, clear discrimination between ATDC and ATM in adipose tissue has limited progress in the field of immunometabolism. In this study, we use CD64 to distinguish ATM and ATDC, and investigated the temporal and functional changes in these myeloid populations during obesity.
View Article and Find Full Text PDFThe prevalence of obesity has continued to rise over the past three decades leading to significant increases in obesity-related medical care costs from metabolic and non-metabolic sequelae. It is now clear that expansion of body fat leads to an increase in inflammation with systemic effects on metabolism. In mouse models of diet-induced obesity, there is also an expansion of bone marrow adipocytes.
View Article and Find Full Text PDFObjective: The relationship between adipose tissue fibrosis, adipocyte hypertrophy, and preadipocyte hyperplasia in the context of obesity and the correlation of these tissue-based phenomena with systemic metabolic disease are poorly defined. The goal of this study was to clarify the relationship between adipose tissue fibrosis, adipocyte hypertrophy, and preadipocyte hyperplasia in human obesity and determine the correlation of these adipose-tissue based phenomena with diabetes.
Methods: Visceral and subcutaneous adipose tissues from humans with obesity collected during bariatric surgery were studied with QRTPCR, immunohistochemistry, and flow cytometry for expression of collagens and fibrosis-related proteins, adipocyte size, and preadipocyte frequency.
Women of reproductive age are protected from metabolic disease relative to postmenopausal women and men. Most preclinical rodent studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of a similar protection observed in female mice. How sex differences in obesity-induced inflammatory responses contribute to these observations is unknown.
View Article and Find Full Text PDFThe search for effective treatments for obesity and its comorbidities is of prime importance. We previously identified IKK-ε and TBK1 as promising therapeutic targets for the treatment of obesity and associated insulin resistance. Here we show that acute inhibition of IKK-ε and TBK1 with amlexanox treatment increases cAMP levels in subcutaneous adipose depots of obese mice, promoting the synthesis and secretion of the cytokine IL-6 from adipocytes and preadipocytes, but not from macrophages.
View Article and Find Full Text PDFInduction of Foxp3 gene expression and acquisition of regulatory T cell fate is, understandably, a highly controlled process and one which many investigators want to illuminate. In studying the regulation of Foxp3 gene expression, several conserved non-coding regions have been identified and the role of various transcription factors at these sites has been explored. What emerges is that many factors, some positive, some negative, interact to collectively drive Foxp3 gene expression and then maintain its expression in Foxp3(+) regulatory T cells.
View Article and Find Full Text PDFInt J Biol Sci
October 2011
Traditional wisdom holds that intact immune responses, such as immune surveillance or immunoediting, are required for preventing and inhibiting tumor development; but recent evidence has also indicated that unresolved immune responses, such as chronic inflammation, can promote the growth and progression of cancer. Within the immune system, cytotoxic CD8(+) and CD4(+) Th1 T cells, along with their characteristically produced cytokine IFN-γ, function as the major anti-tumor immune effector cells, whereas tumor associated macrophages (TAM) or myeloid-derived suppressive cells (MDSC) and their derived cytokines IL-6, TNF, IL-1β and IL-23 are generally recognized as dominant tumor-promoting forces. However, the roles played by Th17 cells, CD4(+) CD25(+) Foxp3(+) regulatory T lymphocytes and immunoregulatory cytokines such as TGF-β in tumor development and survival remain elusive.
View Article and Find Full Text PDFThe molecular mechanisms that direct the development of TCRαβ+CD8αα+ intestinal intraepithelial lymphocytes (IELs) are not thoroughly understood. Here we show that transforming growth factor-β (TGF-β) controls the development of TCRαβ+CD8αα+ IELs. Mice with either a null mutation in the gene encoding TGF-β1 or T cell-specific deletion of TGF-β receptor I lacked TCRαβ+CD8αα+ IELs, whereas mice with transgenic overexpression of TGF-β1 had a larger population of TCRαβ+CD8αα+ IELs.
View Article and Find Full Text PDFThe molecular mechanisms that direct transcription of the gene encoding the transcription factor Foxp3 in CD4(+) T cells remain ill-defined. We show here that deletion of the DNA-binding inhibitor Id3 resulted in the defective generation of Foxp3(+) regulatory T cells (T(reg) cells). We identify two transforming growth factor-β1 (TGF-β1)-dependent mechanisms that were vital for activation of Foxp3 transcription and were defective in Id3(-/-) CD4(+) T cells.
View Article and Find Full Text PDF