The gut-enriched Krüppel-like factor (KLF4) and the ligand-bound thyroid hormone receptor (TR) have each been shown to play a critical role in mammalian gut development and differentiation. We investigated an interrelationship between these two presumably independent pathways using the differentiation marker gene, intestinal alkaline phosphatase (IAP). Transient transfections were performed in Cos-7 cells using luciferase reporter plasmids containing a 2.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2004
We have examined the role that the transcription factor gut-enriched Krüppel-like factor (KLF4 or GKLF) plays in activating the enterocyte differentiation marker gene intestinal alkaline phosphatase (IAP). A yeast one-hybrid screen was used to identify proteins interacting with a previously identified cis-element (IF-III) located within the human IAP gene promoter. DNA-protein interactions were determined by using EMSA.
View Article and Find Full Text PDFEnterocyte differentiation is thought to occur through the transcriptional regulation of a small subset of specific genes. A recent growing body of evidence indicates that post-translational modifications of chromatin proteins (histones) play an important role in the control of gene transcription. Previous work has demonstrated that one such modification, histone acetylation, occurs in an in vitro model of enterocyte differentiation, butyrate-treated HT-29 cells.
View Article and Find Full Text PDFJ Gastrointest Surg
August 2002
Enterocytes at the tips of microvilli are more sensitive to an ischemic insult than those cells residing in the crypts, an effect thought to be due to a relative lack of collateral flow. We speculated that this increased cellular sensitivity to ischemia might be an intrinsic feature of the cells related to their differentiated phenotype. To test this hypothesis, enterocyte response to ischemia was determined using both in vivo and in vitro models.
View Article and Find Full Text PDFThe short-chain fatty acid (SCFA) butyrate is produced via anaerobic bacterial fermentation within the colon and is thought to be protective in regard to colon carcinogenesis. Although butyrate (C4) is considered the most potent of the SCFA, a variety of other SCFA also exist in the colonic lumen. Butyrate is thought to exert its cellular effects through the induction of histone hyperacetylation.
View Article and Find Full Text PDF