Publications by authors named "Brian E Kalmbach"

The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate.

View Article and Find Full Text PDF

Large-scale analysis of single-cell gene expression has revealed transcriptomically defined cell subclasses present throughout the primate neocortex with gene expression profiles that differ depending upon neocortical region. Here, we test whether the interareal differences in gene expression translate to regional specializations in the physiology and morphology of infragranular glutamatergic neurons by performing Patch-seq experiments in brain slices from the temporal cortex (TCx) and motor cortex (MCx) of the macaque. We confirm that transcriptomically defined extratelencephalically projecting neurons of layer 5 (L5 ET neurons) include retrogradely labeled corticospinal neurons in the MCx and find multiple physiological properties and ion channel genes that distinguish L5 ET from non-ET neurons in both areas.

View Article and Find Full Text PDF

Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types.

View Article and Find Full Text PDF

Patients with Fragile X syndrome, the leading monogenetic cause of autism, suffer from impairments related to the prefrontal cortex, including working memory and attention. Synaptic inputs to the distal dendrites of layer 5 pyramidal neurons in the prefrontal cortex have a weak influence on the somatic membrane potential. To overcome this filtering, distal inputs are transformed into local dendritic Na spikes, which propagate to the soma and trigger action potential output.

View Article and Find Full Text PDF

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species.

View Article and Find Full Text PDF

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex, rendering the translational relevance of findings in rodents unclear.

View Article and Find Full Text PDF

The Patch-seq approach is a powerful variation of the patch-clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at scale, we identified and refined key factors that contribute to the efficient collection of high-quality data. We developed patch-clamp electrophysiology software with analysis functions specifically designed to automate acquisition with online quality control.

View Article and Find Full Text PDF

Viral genetic tools that target specific brain cell types could transform basic neuroscience and targeted gene therapy. Here, we use comparative open chromatin analysis to identify thousands of human-neocortical-subclass-specific putative enhancers from across the genome to control gene expression in adeno-associated virus (AAV) vectors. The cellular specificity of reporter expression from enhancer-AAVs is established by molecular profiling after systemic AAV delivery in mouse.

View Article and Find Full Text PDF

Axo-somatic K channels control action potential output in part by acting in concert with voltage-gated Na channels to set action potential threshold. Slowly inactivating, D-type K channels are enriched at the axo-somatic region of cortical pyramidal neurons of the prefrontal cortex, where they regulate action potential firing. We previously demonstrated that D-type K channels are downregulated in extratelencephalic-projecting (ET) L5 neurons in the medial prefrontal cortex (mPFC) of the -knockout mouse model of fragile X syndrome (FX mice), resulting in a hyperpolarized action potential threshold.

View Article and Find Full Text PDF

Channelopathies are implicated in Fragile X syndrome (FXS), yet the dysfunction of a particular ion channel varies with cell type. We previously showed that HCN channel function is elevated in CA1 dendrites of the mouse model of FXS, but reduced in L5 PFC dendrites. Using male mice, we tested whether Fragile X Mental Retardation Protein (FMRPO), the protein whose absence causes FXS, differentially modulates HCN channels in CA1 versus L5 PFC dendrites.

View Article and Find Full Text PDF

von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identifies a transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse classification shows strong homology to extratelencephalic (ET) excitatory neurons that project to subcerebral targets.

View Article and Find Full Text PDF

Gene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single-cell/nucleus RNA sequencing revealed ubiquitous HCN1-subunit expression in excitatory neurons in human, but not mouse, supragranular layers.

View Article and Find Full Text PDF

Key Points: Layer 2/3 neurons of the prefrontal cortex display higher gain of somatic excitability, responding with a higher number of action potentials for a given stimulus, in fmr1 mice. In fmr1 L2/3 neurons, action potentials are taller, faster and narrower. Outside-out patch clamp recordings revealed that the maximum Na conductance density is higher in fmr1 L2/3 neurons.

View Article and Find Full Text PDF

What do dendritic nonlinearities tell a neuron about signals injected into the dendrite? Linear and nonlinear dendritic components affect how time-varying inputs are transformed into action potentials (APs), but the relative contribution of each component is unclear. We developed a novel systems-identification approach to isolate the nonlinear response of layer 5 pyramidal neuron dendrites in mouse prefrontal cortex in response to dendritic current injections. We then quantified the nonlinear component and its effect on the soma, using functional models composed of linear filters and static nonlinearities.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is caused by transcriptional silencing of the fmr1 gene resulting in the loss of fragile X mental retardation protein (FMRP) expression. FXS patients display several behavioral phenotypes associated with prefrontal cortex (PFC) dysfunction. Voltage-gated ion channels, some of which are regulated by FMRP, heavily influence PFC neuron function.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) of both rats and rabbits has been shown to support trace eyeblink conditioning, presumably by providing an input to the cerebellum via the pons that bridges the temporal gap between conditioning stimuli. The pons of rats and rabbits, however, shows divergence in gross anatomical organization, leaving open the question of whether the topography of prefrontal inputs to the pons is similar in rats and rabbits. To investigate this question, we injected anterograde tracer into the mPFC of rats and rabbits to visualize and map in 3D the distribution of labeled terminals in the pons.

View Article and Find Full Text PDF

Many prefrontal cortex (PFC)-dependent tasks require individual neurons to fire persistently in response to brief stimuli. Persistent activity is proposed to involve changes in intrinsic properties, resulting in an increased sensitivity to inputs. The dendrite is particularly relevant to this hypothesis because it receives the majority of synaptic inputs and is enriched for conductances implicated in persistent firing.

View Article and Find Full Text PDF

Most learned responses can be diminished by extinction, a process that can be engaged when a conditioned stimulus (CS) is presented but not reinforced. We present evidence that plasticity in at least two brain regions can mediate extinction of responses produced by trace eyelid conditioning, where the CS and the reinforcing stimulus are separated by a stimulus-free interval. We observed individual differences in the effects of blocking extinction mechanisms in the cerebellum, the structure that, along with several forebrain structures, mediates acquisition of trace eyelid responses; in some rabbits extinction was prevented, whereas in others it was largely unaffected.

View Article and Find Full Text PDF

The temporally specific learning displayed by the cerebellum facilitates mechanistic analysis of neural timing and temporal coding. We report evidence for a subtraction-like mechanism of temporal coding in cerebellar cortex in which activity in a subset of granule cells specifically codes the interval between the offset of two mossy fiber inputs. In a large-scale cerebellar simulation, cessation of one of two ongoing mossy fiber inputs produces a robust temporal code in the population of granule cells.

View Article and Find Full Text PDF

Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses.

View Article and Find Full Text PDF

We used micro-infusions during eyelid conditioning in rabbits to investigate the relative contributions of cerebellar cortex and the underlying deep nuclei (DCN) to the expression of cerebellar learning. These tests were conducted using two forms of cerebellum-dependent eyelid conditioning for which the relative roles of cerebellar cortex and DCN are controversial: delay conditioning, which is largely unaffected by forebrain lesions, and trace conditioning, which involves interactions between forebrain and cerebellum. For rabbits trained with delay conditioning, silencing cerebellar cortex by micro-infusions of the local anesthetic lidocaine unmasked stereotyped short-latency responses.

View Article and Find Full Text PDF