Vitamin B (VB) is a flexible and sustainable catalyst both in nature and the reaction flask, facilitating varied organic transformations of high value to both enzymatic processes and synthetic chemists. Key to this value is the breadth of reactivity it possesses, capable of both ionic, 2 electron chemistry, and radical, 1 electron chemistry. In particular, the ability to generate carbon-centered radical intermediates via photolysis of organocobalt intermediates formed from alkyl electrophiles opens the door to powerful new radical transformations challenging to achieve using classical photoredox or ligand-to-metal charge transfer (LMCT) catalysis.
View Article and Find Full Text PDFEpoxide ring-opening reactions have long been utilized to furnish alcohol products that are valuable in many subfields of chemistry. While many epoxide-opening reactions are known, the hydrogenative opening of epoxides via ionic means remains challenging because of harsh conditions and reactive hydride nucleophiles. Recent progress has shown that radical chemistry can achieve hydrogenative epoxide ring opening under relatively mild conditions; however, these methods invariably require oxophilic metal catalysts and sensitive reagents.
View Article and Find Full Text PDFAberrantly processed or mutant proteins misfold and assemble into a variety of soluble oligomers and insoluble aggregates, a process that is associated with an increasing number of diseases that are not curable or manageable. Herein, we present a chemical toolbox, AggFluor, that allows for live cell imaging and differentiation of complex aggregated conformations in live cells. Based on the chromophore core of green fluorescent proteins, AggFluor is comprised of a series of molecular rotor fluorophores that span a wide range of viscosity sensitivity.
View Article and Find Full Text PDF