Objective: To develop an artificial neural network (ANN) for classification of motor unit action potential (MUAP) duration in real-word, unselected and uncleaned needle electromyography (n-EMG) recordings.
Methods: Two nested ANN models were trained, the first discerning muscle rest, contraction and artifacts in n-EMG recordings from 2674 individual muscles from 326 patients obtained as part of daily care. The second ANN model subsequently used segments labeled as contraction for prediction of prolonged, normal and shortened MUAPs.