Osteoarthritis affects millions worldwide, yet effective treatments remain elusive due to poorly understood molecular mechanisms. While genome-wide association studies (GWAS) have identified over 100 OA-associated loci, identifying the genes impacted at each locus remains challenging. Several studies have mapped expression quantitative trait loci (eQTL) in chondrocytes and colocalized them with OA GWAS variants to identify putative OA risk genes; however, the degree to which genetic variants influence OA risk via alternative splicing has not been explored.
View Article and Find Full Text PDFCellular senescence is a phenotypic state that contributes to the progression of age-related disease through secretion of pro-inflammatory factors known as the senescence associated secretory phenotype (SASP). Understanding the process by which healthy cells become senescent and develop SASP factors is critical for improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells.
View Article and Find Full Text PDFOsteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWAS) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. Integrating expression quantitative trait loci (eQTL), 3D chromatin structure, and other genomic approaches with OA GWAS data offers a promising approach to elucidate disease mechanisms; however, comprehensive eQTL maps in OA-relevant tissues and conditions remain scarce.
View Article and Find Full Text PDFThe high water content of articular cartilage allows this biphasic tissue to withstand large compressive loads through fluid pressurization. The system presented here, termed the "MagnaSquish", provides new capabilities for quantifying the effect of rehydration on cartilage behavior during cyclic loading. An imbalanced rate of fluid exudation during load and fluid re-entry during recovery can lead to the accumulation of strain during successive loading cycles - a phenomenon known as ratcheting.
View Article and Find Full Text PDFOsteoarthritis Cartilage
April 2024
Objective: The correlation between age and incidence of osteoarthritis (OA) is well known but the causal mechanisms involved are not completely understood. This narrative review summarizes selected key findings from the past 30 years that have elucidated key aspects of the relationship between aging and OA.
Methods: The peer-reviewed English language literature was searched on PubMed using keywords including senescence, aging, cartilage, and osteoarthritis, for original studies and reviews published from 1993 to 2023 with a major focus on more recent studies.
Mechanical cues sensed by integrins induce cells to produce proteases to remodel the extracellular matrix. Excessive protease production occurs in many degenerative diseases, including osteoarthritis, in which articular cartilage degradation is associated with the genesis of matrix protein fragments that can activate integrins. We investigated the mechanisms by which integrin signals may promote protease production in response to matrix changes in osteoarthritis.
View Article and Find Full Text PDFObjectives: Prior studies noted that chondrocyte SIRT6 activity is repressed in older chondrocytes rendering cells susceptible to catabolic signalling events implicated in osteoarthritis (OA). This study aimed to define the effect of deficiency on the development of post-traumatic and age-associated OA in mice.
Methods: Male cartilage-specific -deficient mice and intact controls underwent destabilisation of the medial meniscus (DMM) or sham surgery at 16 weeks of age and OA severity was analysed at 6 and 10 weeks postsurgery.
Vascular Ehlers-Danlos Syndrome (vEDS) is a rare autosomal dominant disease caused by mutations in the COL3A1 gene, which renders patients susceptible to aneurysm and arterial dissection and rupture. To determine the role of COL3A1 variants in the biochemical and biophysical properties of human arterial ECM, we developed a method for synthesizing ECM directly from vEDS donor fibroblasts. We found that the protein content of the ECM generated from vEDS donor fibroblasts differed significantly from ECM from healthy donors, including upregulation of collagen subtypes and other proteins related to ECM structural integrity.
View Article and Find Full Text PDFThe identification of genomic loci that are associated with osteoarthritis (OA) has provided a starting point for understanding how genetic variation activates catabolic processes in the joint. However, genetic variants can only alter gene expression and cellular function when the epigenetic environment is permissive to these effects. In this review, we provide examples of how epigenetic shifts at distinct life stages can alter the risk for OA, which we posit is critical for the proper interpretation of genome-wide association studies (GWAS).
View Article and Find Full Text PDFWhile advanced age has long been recognized as the greatest risk factor for osteoarthritis (OA), the biological mechanisms behind this connection remain unclear. Previous work has demonstrated that chondrocytes from older cadaveric donors have elevated levels of DNA damage as compared to chondrocytes from younger donors. The purpose of this study was to determine whether a decline in DNA repair efficiency is one explanation for the accumulation of DNA damage with age, and to quantify the improvement in repair with activation of Sirtuin 6 (SIRT6).
View Article and Find Full Text PDFRelatively little work has evaluated both the disease of osteoarthritis (OA) and clinically-relevant pain outcome measures across different OA models in rats. The objective of this study was to compare sensitivity, pain, and histological disease severity across chemical and surgical models of OA in the rat. Stifle OA was induced in Sprague-Dawley rats via intraarticular injection of monoiodoacetate (MIA) or surgical transection of anterior cruciate ligament and/or destabilization of medial meniscus (ACL+DMM or DMM alone).
View Article and Find Full Text PDFGenome-wide association studies have identified over 100 loci associated with osteoarthritis risk, but the majority of osteoarthritis risk variants are noncoding, making it difficult to identify the impacted genes for further study and therapeutic development. To address this need, we used a multiomic approach and genome editing to identify and functionally characterize potential osteoarthritis risk genes. Computational analysis of genome-wide association studies and ChIP-seq data revealed that chondrocyte regulatory loci are enriched for osteoarthritis risk variants.
View Article and Find Full Text PDFIt is known that chondrocytes from joints with osteoarthritis (OA) exhibit high levels of DNA damage, but the degree to which chondrocytes accumulate DNA damage during "normal aging" has not been established. The goal of this study was to quantify the DNA damage present in chondrocytes obtained from cadaveric donors of a wide age range, and to compare the extent of this damage to OA chondrocytes. The alkaline comet assay was used to measure the DNA damage in normal cartilage from the ankle (talus) and the knee (femur) of cadaveric donors, as well as in OA chondrocytes obtained at the time of total knee replacement.
View Article and Find Full Text PDFAging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging.
View Article and Find Full Text PDFIntervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age.
View Article and Find Full Text PDFMechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells.
View Article and Find Full Text PDFThe nuclear localized protein deacetylase, SIRT6, has been identified as a crucial regulator of biological processes that drive aging. Among these processes, SIRT6 can promote resistance to oxidative stress conditions, but the precise mechanisms remain unclear. The objectives of this study were to examine the regulation of SIRT6 activity by age and oxidative stress and define the role of SIRT6 in maintaining redox homeostasis in articular chondrocytes.
View Article and Find Full Text PDFNat Rev Rheumatol
January 2021
The development of osteoarthritis (OA) correlates with a rise in the number of senescent cells in joint tissues, and the senescence-associated secretory phenotype (SASP) has been implicated in cartilage degradation and OA. Age-related mitochondrial dysfunction and associated oxidative stress might induce senescence in joint tissue cells. However, senescence is not the only driver of OA, and the mechanisms by which senescent cells contribute to disease progression are not fully understood.
View Article and Find Full Text PDFObjective: To determine the role of JNK signaling in the development of osteoarthritis (OA) induced by joint injury or aging in mice.
Methods: In the joint injury model, 12-week-old wild-type control, JNK1 , JNK2 , and JNK1 JNK2 aggecan-Cre double-knockout mice were subjected to destabilization of the medial meniscus (DMM) (n = 15 mice per group) or sham surgery (n = 9-10 mice per group), and OA was evaluated 8 weeks later. In the aging experiment, wild-type control, JNK1 , and JNK2 mice (n = 15 per group) were evaluated at 18 months of age.
Extracellular matrix and osmolarity influence the development and homeostasis of skeletal tissues through Rho GTPase-mediated alteration of the actin cytoskeleton. This study investigated whether the actin-branching Arp2/3 complex, a downstream effector of the Rho GTPases Cdc42 and Rac1, plays a critical role in maintaining the health of matrix-rich and osmotically loaded intervertebral discs and cartilage. Mice with constitutive intervertebral disc- and cartilage-specific deletion of the critical Arp2/3 subunit Arpc2 (Col2-Cre; Arpc2fl/fl) developed chondrodysplasia and spinal defects.
View Article and Find Full Text PDF