Complex traits often exhibit complex underlying genetic architectures resulting from a combination of evolution from standing variation, hard and soft sweeps, and alleles of varying effect size. Increasingly, studies implicate both large-effect loci and polygenic patterns underpinning adaptation, but the extent that common genetic architectures are utilized during repeated adaptation is not well understood. Sea age or age at maturation represents a significant life history trait in Atlantic Salmon (), the genetic basis of which has been studied extensively in European Atlantic populations, with repeated identification of large-effect loci.
View Article and Find Full Text PDFWe describe observations of sea lamprey (Petromyzon marinus) and striped bass (Morone saxatilis) incursions into Labrador, Canada. While P. marinus have been periodically observed in similar latitudes, their numbers have conspicuously increased in estuarine environments in 2020.
View Article and Find Full Text PDFThe resiliency of populations and species to environmental change is dependent on the maintenance of genetic diversity, and as such, quantifying diversity is central to combating ongoing widespread reductions in biodiversity. With the advent of next-generation sequencing, several methods now exist for resolving fine-scale population structure, but the comparative performance of these methods for genetic assignment has rarely been tested. Here, we evaluate the performance of sequenced microsatellites and a single nucleotide polymorphism (SNP) array to resolve fine-scale population structure in a critically important salmonid in north eastern Canada, Arctic Charr ().
View Article and Find Full Text PDFDomestication is rife with episodes of interbreeding between cultured and wild populations, potentially challenging adaptive variation in the wild. In Atlantic salmon, , the number of domesticated individuals far exceeds wild individuals, and escape events occur regularly, yet evidence of the magnitude and geographic scale of interbreeding resulting from individual escape events is lacking. We screened juvenile Atlantic salmon using 95 single nucleotide polymorphisms following a single, large aquaculture escape in the Northwest Atlantic and report the landscape-scale detection of hybrid and feral salmon (27.
View Article and Find Full Text PDFIdentification of discrete and unique assemblages of individuals or populations is central to the management of exploited species. Advances in population genomics provide new opportunities for re-evaluating existing conservation units but comparisons among approaches remain rare. We compare the utility of RAD-seq, a single nucleotide polymorphism (SNP) array and a microsatellite panel to resolve spatial structuring under a scenario of possible trans-Atlantic secondary contact in a threatened Atlantic Salmon, Salmo salar, population in southern Newfoundland.
View Article and Find Full Text PDFMigrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth.
View Article and Find Full Text PDFAmong-lake variation in mercury (Hg) concentrations in landlocked Arctic char was examined in 27 char populations from remote lakes across the Canadian Arctic. A total of 520 landlocked Arctic char were collected from 27 lakes, as well as sediments and surface water from a subset of lakes in 1999, 2002, and 2005 to 2007. Size, length, age, and trophic position (delta(15)N) of individual char were determined and relationships with total Hg (THg) concentrations investigated, to identify a common covariate for adjustment using analysis of covariance (ANCOVA).
View Article and Find Full Text PDFStable isotope signatures were obtained from paired scale and muscle tissue samples from smolt, post-smolt and one-sea-winter adult Atlantic salmon (Salmo salar). Post-smolt and adult scales were separated into central and outer (marine) portions with analyses carried out on the marine growth section of both life-history stages and the central portion for the adult scales. Muscle and scale delta(13)C and delta(15)N signatures were assessed (1) to determine whether a linear relationship exists between tissue types, (2) to determine if a constant offset exists between tissue signatures across all life-history stages, and (3) to evaluate whether underplating imparts a significant bias to life-history scale segments that would preclude their use in retrospective analyses of any ontogenetic dietary changes between life-history stages.
View Article and Find Full Text PDFArctic charr, a highly plastic salmonid that inhabits the circumpolar region, colonized its current environment after the last glaciation. Recent colonization limits the capacity of many techniques to define and characterize constituent populations. As a novel approach, we used the major histocompatibility (MH) class IIalpha gene polymorphism as a marker that would characterize the genetic divergence of global Arctic charr populations caused by drift and by local adaptation to pathogens.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
February 2008
Field-collected otolith samples of young-of the-year Arctic charr (Salvelinus alpinus) and brook charr (Salvelinus fontinalis) and monitored water temperatures were used to estimate a delta(18)O fractionation equation for the genus Salvelinus. When compared to literature reported equations, the developed fractionation equation had a statistically similar slope but dissimilar intercept. Statistical similarities among fractionation equation slope estimates suggest a common otolith delta(18)O incorporation response among fish species that may be interpreted as widespread equilibrium otolith delta(18)O deposition.
View Article and Find Full Text PDFFisheries for arctic freshwater and diadromous fish species contribute significantly to northern economies. Climate change, and to a lesser extent increased ultraviolet radiation, effects in freshwaters will have profound effects on fisheries from three perspectives: quantity of fish available, quality of fish available, and success of the fishers. Accordingly, substantive adaptation will very likely be required to conduct fisheries sustainably in the future as these effects take hold.
View Article and Find Full Text PDFArctic freshwater and diadromous fish species will respond to the various effects of climate change in many ways. For wide-ranging species, many of which are key components of northern aquatic ecosystems and fisheries, there is a large range of possible responses due to inter- and intra-specific variation, differences in the effects of climate drivers within ACIA regions, and differences in drivers among regions. All this diversity, coupled with limited understanding of fish responses to climate parameters generally, permits enumeration only of a range of possible responses which are developed here for selected important fishes.
View Article and Find Full Text PDFProjected shifts in climate forcing variables such as temperature and precipitation are of great relevance to arctic freshwater ecosystems and biota. These will result in many direct and indirect effects upon the ecosystems and fish present therein. Shifts projected for fish populations will range from positive to negative in overall effect, differ among species and also among populations within species depending upon their biology and tolerances, and will be integrated by the fish within their local aquascapes.
View Article and Find Full Text PDF