J Environ Manage
December 2021
Stormwater runoff is one critical urban issue that exemplifies the complexity in coupling human and natural systems. Innumerable studies have described and assessed the hydrological responses that result from land-use changes through a 'post land use change' hydrological analysis. Complex systems theory, however, suggests that the urban and ecological systems operate as an intertwined whole.
View Article and Find Full Text PDFHuman-induced urban growth and sprawl have implications for greenhouse gas (GHG) emissions that may not be included in conventional GHG accounting methods. Improved understanding of this issue requires use of interactive, spatial-explicit social-ecological systems modeling. This paper develops a comprehensive approach to modeling GHG emissions from urban developments, considering Stockholm County, Sweden as a case study.
View Article and Find Full Text PDFHydrothermal liquefaction (HTL) is one of the most promising platforms to valorize diverse biomass. Yet, a large amount of wastewater is produced containing a large amount of recalcitrant substances. Valorization of the refractory wastewater by biological systems to recapture organic matter and nutrients is not only clearly beneficial for the environment but also good for energy recovery.
View Article and Find Full Text PDFThis study addresses and conceptualizes the possible dependence of ecosystem services on prevailing air and/or water flow processes and conditions, and particularly on the trajectories and associated spatial reach of these flows in carrying services from supply to demand areas in the landscape. The present conceptualization considers and accounts for such flow-dependence in terms of potential and actually realized service supply and demand, which may generally differ and must therefore be distinguished due to and accounting for the prevailing conditions of service carrier flows. We here concretize and quantify such flow-dependence for a specific landscape case (the Stockholm region, Sweden) and for two examples of regulating ecosystem services: local climate regulation and storm water regulation.
View Article and Find Full Text PDFWe connected a cellular, dynamic, spatial urban growth model and a semi-distributed continuous hydrology model to quantitatively predict streamflow in response to possible future urban growth at a basin scale. The main goal was to demonstrate the utility of the approach for informing public planning policy and investment choices. The Hydrological Simulation Program-Fortran (HSPF) was set up and calibrated for the Kishwaukee River basin in the Midwestern USA and was repeatedly run with various land use scenarios generated either by the urban growth model (LEAMluc) or hypothetically.
View Article and Find Full Text PDFA land-use-change simulation model (LEAM) and a non-point-source (NPS) water quality model (L-THIA) were closely coupled as LEAMwq in order to determine the long-term implications of various degree of urbanization on NPS total nitrogen (TN), total suspended particles (TSP), and total phosphorus (TP) loads. A future land-use projection in the St. Louis metropolitan area from 2005 to 2030 using three economic growth scenarios (base, low, and high) and a long-term precipitation dataset were used to predict the mean annual surface runoff and mean annual NPS pollutant loads in the region.
View Article and Find Full Text PDF