Publications by authors named "Brian D Livingston"

There remains a need for vaccines that can safely and effectively protect against the biological threat agents Venezuelan (VEEV), western (WEEV), and eastern (EEEV) equine encephalitis virus. Previously, we demonstrated that a VEEV DNA vaccine that was optimized for increased antigen expression and delivered by intramuscular (IM) electroporation (EP) elicited robust and durable virus-specific antibody responses in multiple animal species and provided complete protection against VEEV aerosol challenge in mice and nonhuman primates. Here, we performed a comparative evaluation of the immunogenicity and protective efficacy of individual optimized VEEV, WEEV, and EEEV DNA vaccines with that of a 1 : 1 : 1 mixture of these vaccines, which we have termed the 3-EEV DNA vaccine, when delivered by IM EP.

View Article and Find Full Text PDF

Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System.

View Article and Find Full Text PDF

We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected.

View Article and Find Full Text PDF

We evaluated the immunogenicity and protective efficacy of a DNA vaccine expressing codon-optimized envelope glycoprotein genes of Venezuelan equine encephalitis virus (VEEV) when delivered by intramuscular electroporation. Mice vaccinated with the DNA vaccine developed robust VEEV-neutralizing antibody responses that were comparable to those observed after administration of the live-attenuated VEEV vaccine TC-83 and were completely protected from a lethal aerosol VEEV challenge. The DNA vaccine also elicited strong neutralizing antibody responses in rabbits that persisted at high levels for at least 6 months and could be boosted by a single additional electroporation administration of the DNA performed approximately 6 months after the initial vaccinations.

View Article and Find Full Text PDF

DNA vaccination is a promising immunization strategy that could be applied in the development of vaccines for a variety of prophylactic and therapeutic indications. Utilizing anthrax protective antigen as a model antigen, we demonstrate that electroporation mediated delivery enhanced the immunogenicity of DNA vaccines in nonhuman primates over 100-fold as compared to conventional intramuscular injection. Two administrations of a DNA vaccine with electroporation elicited anthrax toxin neutralizing antibody responses in 100% of rhesus macaques.

View Article and Find Full Text PDF

A Phase I human vaccine trial of a novel polypeptide vaccine of HIV T helper epitopes (EP-1043) and a DNA vaccine of HIV CTL epitopes was conducted in 84 healthy adult volunteers. The vaccine immunogenicity was assessed by an intracellular cytokine staining assay for IL-2, IL-4, TNF-alpha and IFN-gamma. Sixty eight percent (32/47) of subjects had a positive CD4+ T response after receiving two vaccinations of the polypeptide vaccine.

View Article and Find Full Text PDF

Coordinated interactions between helper and cytotoxic T-lymphocytes (HTL and CTL) are needed for optimal effector cell functions and the establishment of immunological memory. We, therefore, designed a mixed format vaccine based on the use of highly conserved HIV-derived T-lymphocyte epitopes wherein the HTL epitopes were delivered as a recombinant protein and the CTL epitopes which were encoded in a DNA vaccine plasmid. Immunogenicity testing in HLA transgenic mice and GLP preclinical safety testing in rabbits and guinea pigs were used to document the utility of this approach and to support Phase 1 trial clinical testing.

View Article and Find Full Text PDF

A DNA vaccine encoding sequence-conserved human immunodeficiency virus type 1 (HIV-1)-derived cytotoxic T-lymphocyte (CTL) epitopes from multiple HIV-1 gene products (designated EP HIV-1090) was evaluated in a placebo-controlled, dose escalation phase 1 clinical trial of HIV-1-infected subjects receiving potent combination antiretroviral therapy. Patients received four intramuscular immunizations with EP HIV-1090 over a 4-month period at one of four doses (0.5, 1.

View Article and Find Full Text PDF

We evaluated EP HIV-1090 vaccine, a DNA plasmid encoding 21 cytotoxic T-lymphocyte (CTL) epitopes of human immunodeficiency virus type 1 (HIV-1) and the pan-DR helper T-lymphocyte epitope (PADRE), in a dose escalation, randomized, double-blinded, placebo-controlled Phase 1 trial. Vaccine, at 0.5, 2.

View Article and Find Full Text PDF

Protein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptides that bound with moderate to high affinity subsequently was assessed using HLA transgenic mice (CTL) and HLA cross-reacting H-2(bxd) (BALB/c x C57BL/6J) mice (HTL).

View Article and Find Full Text PDF

Immunostimulatory DNA containing unmethylated CpG motifs is recognized by Toll-like receptor 9, resulting in the activation of innate immune responses that subsequently amplify the adaptive-immune response. Advances in the characterization of Toll-like receptor 9 signaling have identified immunostimulatory sequences (ISS) with distinct biological activities. Numerous animal models have demonstrated that synthetic ISS are effective adjuvants that enhance both humoral and cellular immune responses in diverse indications, ranging from infectious disease to cancer and allergy.

View Article and Find Full Text PDF

Approved influenza vaccines based on the induction of antibodies to hemagglutinin are strain specific and cumbersome to manufacture. Several alternative vaccine strategies based on the induction of humoral responses against the external domain of the M2 protein, as well as cellular responses against nucleoprotein, have the potential to target multiple strains of influenza. A universal vaccine would be a major advancement in the prevention of influenza infection as it would alleviate the need for tailored vaccines to control seasonal influenza epidemics while simultaneously providing a level of protection against potential pandemic strains.

View Article and Find Full Text PDF

Recognition by CD8(+) T lymphocytes (CTL) of epitopes that are derived from conserved gene products, such as Gag and Pol, is well documented and conceptually supports the development of epitope-based vaccines for use against diverse HIV-1 subtypes. However, many CTL epitopes from highly conserved regions within the HIV-1 genome are highly variable, when assessed by comparison of amino acid sequences. The TCR is somewhat promiscuous with respect to peptide binding, and, as such, CTL can often recognize related epitopes.

View Article and Find Full Text PDF

Epitope-based vaccines designed to induce CTL responses specific for HIV-1 are being developed as a means for addressing vaccine potency and viral heterogeneity. We identified a set of 21 HLA-A2, HLA-A3, and HLA-B7 restricted supertype epitopes from conserved regions of HIV-1 to develop such a vaccine. Based on peptide-binding studies and phenotypic frequencies of HLA-A2, HLA-A3, and HLA-B7 allelic variants, these epitopes are predicted to be immunogenic in greater than 85% of individuals.

View Article and Find Full Text PDF

HLA class I molecules can be classified into supertypes associated with overlapping peptide-binding motifs and repertoires. Herein, overlaps in peptide-binding and T-cell recognition repertoires were demonstrated between mouse and human molecules. Since rodent and primate lineages separated before the current allelic variation of mouse and human class I molecules, these data demonstrate that supertypic specificities originated by convergent evolution.

View Article and Find Full Text PDF