The Imaging FlowCytobot (IFCB) is a field-deployable imaging-in-flow cytometer that is increasingly being used to monitor harmful algae. The IFCB acquires images of suspended particles based on their chlorophyll-a fluorescence and/or the amount of light they scatter (side scattering). The present study hypothesized that fluorescence-based image acquisition would undercount Dinophysis spp.
View Article and Find Full Text PDFThe toxigenic diatom Pseudo-nitzschia australis (Frenguelli), isolated from the California Current System (CCS), was examined in unialgal laboratory cultures to evaluate domoic acid (DA) production and cellular growth as a response to macronutrient limitation. Toxic blooms of P. australis are common in the coastal waters of eastern boundary upwelling systems (EBUS), including those of the CCS off the west coast of the United States where limitation by macronutrients, specifically silicon as silicic acid [Si(OH)], or phosphorus as phosphate [PO], has been suggested to increase the production of DA by these diatoms.
View Article and Find Full Text PDFMultiple species of the genus Dinophysis produce diarrhetic shellfish toxins (okadaic acid and Dinophysis toxins, OA/DTXs analogs) and/or pectenotoxins (PTXs). Only since 2008 have DSP events (illnesses and/or shellfish harvesting closures) become recognized as a threat to human health in the United States. This study characterized 20 strains representing five species of Dinophysis spp.
View Article and Find Full Text PDFSummer bivalve shellfish mortalities have been observed in Puget Sound for nearly a century and attempts to understand and mitigate these losses have been only partially successful. Likewise, the understanding of the environmental conditions triggering shellfish mortalities and successful strategies for their mitigation are incomplete. In the literature, phytoplankton have played only a cursory role in summer shellfish mortalities in Washington State because spawning stress and bacteria were thought to be the primary causes.
View Article and Find Full Text PDFAzaspiracids (AZA) are novel lipophilic polyether marine biotoxins associated with azaspiracid shellfish poisoning (AZP). Azaspiracid-59 (AZA-59) is a new AZA that was recently detected in strains of Azadinium poporum from Puget Sound, Washington State. In order to understand how environmental factors affect AZA abundances in Puget Sound, a laboratory experiment was conducted with two local strains of A.
View Article and Find Full Text PDFA coastwide bloom of the toxigenic diatom in spring 2015 resulted in the largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast. Elevated toxins were measured in numerous stranded marine mammals and resulted in geographically extensive and prolonged closures of razor clam, rock crab, and Dungeness crab fisheries. We demonstrate that this outbreak was initiated by anomalously warm ocean conditions.
View Article and Find Full Text PDFToxin-producing blooms of dinoflagellates in the genus Alexandrium have plagued the inhabitants of the Salish Sea for centuries. Yet the environmental conditions that promote accelerated growth of this organism, a producer of paralytic shellfish toxins, is lacking. This study quantitatively determined the growth response of two Alexandrium isolates to a range of temperatures and salinities, factors that will strongly respond to future climate change scenarios.
View Article and Find Full Text PDFPopulations of Vibrio parahaemolyticus in the environment can be influenced by numerous factors. We assessed the correlation of total (tl+) and potentially virulent (tdh+) V. parahaemolyticus in water with three harmful algal bloom (HAB) genera (Pseudo-nitzschia, Alexandrium and Dinophysis), the abundance of diatoms and dinoflagellates, chlorophyll-a and temperature, salinity and macronutrients at five sites in Washington State from 2008-2009.
View Article and Find Full Text PDFFactors regulating excystment of a toxic dinoflagellate in the genus were investigated in cysts from Puget Sound, Washington State, USA. Experiments were carried out in the laboratory using cysts collected from benthic seedbeds to determine if excystment is controlled by internal or environmental factors. The results suggest that the timing of germination is not tightly controlled by an endogenous clock, though there is a suggestion of a cyclical pattern.
View Article and Find Full Text PDFThe illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB) partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 μg okadaic acid (OA) + dinophysistoxins (DTXs)/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster.
View Article and Find Full Text PDFA high degree of pseudo-cryptic diversity was reported in the well-studied diatom genus Pseudo-nitzschia. Studies off the coast of Washington State revealed the presence of hitherto undescribed diversity of Pseudo-nitzschia. Forty-one clonal strains, representing six different taxa of the P.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2010
Oceanic high-nitrate, low-chlorophyll environments have been highlighted for potential large-scale iron fertilizations to help mitigate global climate change. Controversy surrounds these initiatives, both in the degree of carbon removal and magnitude of ecosystem impacts. Previous open ocean enrichment experiments have shown that iron additions stimulate growth of the toxigenic diatom genus Pseudonitzschia.
View Article and Find Full Text PDFTraditionally, harmful algal bloom studies have primarily focused on quantifying toxin levels contained within the phytoplankton cells of interest. In the case of paralytic shellfish poisoning toxins (PSTs), intracellular toxin levels and the effects of dietary consumption of toxic cells by planktivores have been well documented. However, little information is available regarding the levels of extracellular PSTs that may leak or be released into seawater from toxic cells during blooms.
View Article and Find Full Text PDFThe Pacific razor clam, Siliqua patula, is known to retain domoic acid, a water-soluble glutamate receptor agonist produced by diatoms of the genus Pseudo-nitzschia. The mechanism by which razor clams tolerate high levels of the toxin, domoic acid, in their tissues while still retaining normal nerve function is unknown. In our study, a domoic acid binding site was solubilized from razor clam siphon using a combination of Triton X-100 and digitonin.
View Article and Find Full Text PDF