The soluble cytoplasmic tail of CD45 (ct-CD45) is a cleavage fragment of CD45, that is generated during the activation of human phagocytes. Upon release to the extracellular space, ct-CD45 binds to human T cells and inhibits their activation in vitro. Here, we studied the potential role of TLR4 as a receptor for ct-CD45.
View Article and Find Full Text PDFAdeno-associated viruses (AAVs) are emerging as one of the vehicles of choice for gene therapy. However, the potential immunogenicity of these vectors is a major limitation of their use, leading to the necessity of a better understanding of how viral vectors engage the innate immune system. In this study, we demonstrate the immune response mediated by an AAV vector in a mouse model.
View Article and Find Full Text PDFBackground: A novel avian H7N9 virus with a high case fatality rate in humans emerged in China in 2013. We evaluated the immunogenicity and protective efficacy of a candidate Vero cell culture-derived whole-virus H7N9 vaccine in small animal models.
Methods: Antibody responses induced in immunized DBA/2J mice and guinea pigs were evaluated by hemagglutination inhibition (HI), microneutralization (MN), and neuraminidase inhibition (NAi) assays.
Lyme borreliosis (LB) patients who recover, as well as previously infected asymptomatic individuals, remain vulnerable to reinfection with Borrelia burgdorferi sensu lato. There is limited information available about the use of OspA vaccines in this population. In this study, a randomized double-blind phase I/II trial was performed to investigate the safety and immunogenicity of a novel multivalent OspA vaccine in healthy adults who were either seronegative or seropositive for previous B.
View Article and Find Full Text PDFThe development of vaccines against H5N1 influenza A viruses is a cornerstone of pandemic preparedness. Clinical trials of H5N1 vaccines have been undertaken in healthy subjects, but studies in risk groups have been lacking. In this study, the immunogenicity and safety of a nonadjuvanted cell culture-derived whole-virus H5N1 vaccine were assessed in chronically ill and immunocompromised adults.
View Article and Find Full Text PDFBackground: The availability of a universal influenza vaccine able to induce broad cross-reactive immune responses against diverse influenza viruses would provide an alternative to currently available strain-specific vaccines. We evaluated the ability of vectors based on modified vaccinia virus Ankara (MVA) expressing conserved influenza proteins to protect mice against lethal challenge with multiple influenza subtypes.
Methods: Mice were immunized with MVA vectors expressing H5N1-derived nucleoprotein (NP), the stem region of hemagglutinin (HA), matrix proteins 1 and 2 (M1 and M2), the viral polymerase basic protein 1 (PB1), or the HA stem fused to a quadrivalent matrix protein 2 extracellular domain (M2e).
Background: For clinical development of a novel multivalent OspA vaccine against Lyme borreliosis, serological assays are required which can be used to establish immune correlates of protection against infection with Borrelia.
Methods: Four assays (an OspA IgG ELISA, a competitive inhibition (CI) ELISA, a Borrelia surface-binding (SB) assay and a Borrelia killing assay) were used to evaluate the correlation between immune responses induced by rOspA 1/2 (a chimeric immunogen containing protective epitopes from OspA serotypes 1 and 2), and protective immunity against infection by B. burgdorferi s.
Increasing the potency and supply of seasonal and pandemic influenza vaccines remains an important unmet medical need which may be effectively accomplished with adjuvanted egg- or cell culture-derived vaccines. Vaxfectin, a cationic lipid-based adjuvant with a favorable safety profile in phase 1 plasmid DNA vaccines trials, was tested in combination with seasonal split, trivalent and pandemic whole virus, monovalent influenza vaccines produced in Vero cell cultures. Comparison of hemagglutination inhibition (HI) antibody titers in Vaxfectin-adjuvanted to nonadjuvanted vaccinated mice and guinea pigs revealed 3- to 20-fold increases in antibody titers against each of the trivalent influenza virus vaccine strains and 2- to 8-fold increases in antibody titers against the monovalent H5N1 influenza virus vaccine strain.
View Article and Find Full Text PDFLancet Infect Dis
August 2013
Background: Lyme borreliosis is caused by Borrelia burgdorferi sensu stricto in the USA and by several Borrelia species in Europe and Asia, but no human vaccine is available. We investigated the safety and immunogenicity of adjuvanted and non-adjuvanted vaccines containing protective epitopes from Borrelia species outer surface protein A (OspA) serotypes in healthy adults.
Methods: Between March 1, 2011, and May 8, 2012, we did a double-blind, randomised, dose-escalation phase 1/2 study at four sites in Austria and Germany.
Vaccine
August 2012
Background: Preparation for an H5N1 influenza pandemic in humans could include priming the population in the pre-pandemic period with a vaccine produced from an existing H5N1 vaccine strain, with the possibility of boosting with a pandemic virus vaccine when it becomes available. We investigated the longevity of the immune response after one or two priming immunizations with a whole-virus H5N1 vaccine and the extent to which this can be boosted by later immunization with either a homologous or heterologous vaccine.
Methods: Mice received one or two priming immunizations with a Vero cell culture-derived, whole-virus clade 1 H5N1 vaccine formulated to contain either 750 ng or 30 ng hemagglutinin.
Background: Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable.
Methodology/principal Findings: A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus.
Background: New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine.
View Article and Find Full Text PDFA single recombinant outer surface protein A (OspA) antigen designed to contain protective elements from 2 different OspA serotypes (1 and 2) is able to induce antibody responses that protect mice against infection with either Borrelia burgdorferi sensu stricto (OspA serotype-1) or Borrelia afzelii (OspA serotype-2). Protection against infection with B burgdorferi ss strain ZS7 was demonstrated in a needle-challenge model. Protection against B.
View Article and Find Full Text PDFIn the present study the homologous and heterologous type and subtype specific cellular immune response induced by a wild type inactivated whole virus H5N1 Influenza (A/Vietnam/1203/2004) vaccine was evaluated. Two immunizations with the Vero cell derived H5N1 influenza vaccine on Day 0 and Day 21 induced significant H5N1 vaccine specific and H5 haemagglutinin specific clade and cross-clade reactive CD4(+) T cell responses, which were maintained at significant levels for at least 6 months. The H5N1 vaccine specific response cross-reacted with the H1N1, but not with H3N2 or B seasonal Influenza strains.
View Article and Find Full Text PDFBackground: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model.
Methodology/principal Findings: For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors.
The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge.
View Article and Find Full Text PDFRecent findings indicate that seasonal influenza vaccination or infection of healthy humans may contribute to heterosubtypic immunity against new influenza A subtypes, such as H5N1. Here, we investigated whether seasonal influenza vaccination in a mouse model could induce any immunity against the H5N1 subtype. It could be demonstrated that, largely due to the H1N1 component strain A/NewCaledonia/20/99, parenteral immunization of mice with a trivalent seasonal influenza vaccine elicited heterosubtype H5-reactive antibodies able to confer partial protection against H5N1 influenza virus infection.
View Article and Find Full Text PDFPrevious investigations from our laboratory identified the ultrastructural pathology and cytochemistry of macrothrombocytes (MTC) from patients with the X-linked, G208S varient of the GATA-1 mutation.A subsequent biochemical study of the MTC cytoskeletal proteins using polyacrylamide gel electrophoresis and western blot analysis revealed the MTC were deficient in the high-molecular weight, actin binding protein, talin. The present study has used immunofluorescent techniques to further characterize the talin deficiency.
View Article and Find Full Text PDFThe timely development of safe and effective vaccines against avian influenza virus of the H5N1 subtype will be of the utmost importance in the event of a pandemic. Our aim was first to develop a safe live vaccine which induces both humoral and cell-mediated immune responses against human H5N1 influenza viruses and second, since the supply of embryonated eggs for traditional influenza vaccine production may be endangered in a pandemic, an egg-independent production procedure based on a permanent cell line. In the present article, the generation of a complementing Vero cell line suitable for the production of safe poxviral vaccines is described.
View Article and Find Full Text PDFThe rapid spread and the transmission to humans of avian influenza virus (H5N1) have induced world-wide fears of a new pandemic and raised concerns over the ability of standard influenza vaccine production methods to rapidly supply sufficient amounts of an effective vaccine. We report here on a robust and flexible strategy which uses wild-type virus grown in a continuous cell culture (Vero) system to produce an inactivated whole virus vaccine. Candidate vaccines based on clade 1 and clade 2 influenza H5N1 strains were developed and demonstrated to be highly immunogenic in animal models.
View Article and Find Full Text PDFThe stability of vaccines during storage and handling is a prerequisite for optimal potency at the time of immunization. Meningococcal group C conjugate vaccines have been successfully incorporated in mass immunization programs, however, thus far no long-term real-time stability studies of these vaccines have been reported. Stability of de-O-acetylated group C meningococcal polysaccharide coupled to tetanus toxoid (GCMP-TT) was evaluated in real time on the basis of immunogenicity and physiochemical properties.
View Article and Find Full Text PDFA double-inactivated, candidate whole virus vaccine against severe acute respiratory syndrome associated coronavirus (SARS-CoV) was developed and manufactured at large scale using fermenter cultures of serum protein free Vero cells. A two step inactivation procedure involving sequential formaldehyde and U.V.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.