Publications by authors named "Brian Crone"

Article Synopsis
  • - The study assessed how selective certain drinking water-related PFAS compounds are for chloride ions using three types of anion exchange resins, focusing on low concentrations relevant to drinking water (≤500 ng/L).
  • - Results showed that most PFAS behaved according to traditional ion exchange principles, with selectivity increasing with both PFAS carbon chain length and chloride concentrations, while maintaining a much higher selectivity than inorganic anions like nitrate.
  • - A competition experiment confirmed that selectivity values for individual PFAS could be used in a multisolute context, paving the way for improved models in water treatment processes involving PFAS.
View Article and Find Full Text PDF

When implementing anion exchange (AEX) for per- and polyfluoroalkyl substances treatment, temporal drinking water quality changes from concurrent inorganic anion (IA) removal can create unintended consequences (e.g., corrosion control impacts).

View Article and Find Full Text PDF

Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) are persistent, toxic, and bioaccumulative. Currently, PCDD/F monitoring programs primarily use fish and birds with potentially large home ranges to monitor temporal trends over broad spatial scales; sentinel organisms that provide targeted sediment contaminant information across small geographic areas have yet to be developed. Riparian orb-weaving spiders, which typically have small home ranges and consume primarily adult aquatic insects, are potential PCDD/F sentinels.

View Article and Find Full Text PDF

To assess the practical implications of various bottle materials used in anion exchange (IX) or granular activated carbon (GAC) isotherm experiments, adsorption of seven per- and polyfluoroalkyl substances (PFAS) onto three common bottle materials (silanized glass, polypropylene, and high-density polyethylene [HDPE]) were screened. Results were similar between bottle materials; therefore, only HDPE was used in a detailed bottle material isotherm study with 11 PFAS. For each PFAS, an HDPE bottle isotherm was generated with equilibrium liquid phase concentrations relevant to drinking water (<2000 ng/L).

View Article and Find Full Text PDF

The release of persistent per- and polyfluoroalkyl substances (PFAS) into the environment is a major concern for the United States Environmental Protection Agency (U.S. EPA).

View Article and Find Full Text PDF

Water above 374 °C and 22.1 MPa, becomes supercritical, a special state where organic solubility increases and oxidation processes are accelerated. Supercritical water oxidation (SCWO) has been previously shown to destroy hazardous substances such as halogenated compounds.

View Article and Find Full Text PDF

Anaerobic treatment of domestic wastewater (DWW) produces dissolved methane that needs to be recovered for use as an energy product. Membrane-based recovery systems have been reported in the literature but are often limited by fouling. The objective of this study was to develop a methane producing biofilm on the shell side surface a membrane to allow for immediate recovery of methane as it was produced, negating mass transfer resistance caused by fouling.

View Article and Find Full Text PDF

Per-and polyfluoroalkyl substances (PFAS) occurrence in drinking water and treatment methods for their removal are reviewed. PFAS are fluorinated substances whose unique properties make them effective surface-active agents with uses ranging from stain repellants to fire-fighting foams. In response to concerns about drinking water contamination and health risks from PFAS exposure, the United States Environmental Protection Agency published Health Advisories (HAs) for perfluorooctanoic acid and perfluorooctane sulfonic acid.

View Article and Find Full Text PDF

This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and can produce recycled water to displace potable water. Energy recovery is possible with methane generated from AnMBRs.

View Article and Find Full Text PDF

The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates.

View Article and Find Full Text PDF

is demonstrated to suppress interface recombination in an organic photo-voltaic device. These strategies lead to a dramatic improvement in a model bilayer system and bulk-heterojunction system. These interface strategies are applicable to a wide variety of donor-acceptor systems, making them both fundamentally interesting and technologically relevant for achieving high efficiency organic electronic devices.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessions9jn3soo200o7dc8vgv2elfio3pdr0ht): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once