Self-assembled benzoselenadiazole (BSe)-capped tripeptide based nanofibrillar hydrogels have been developed with inherent anticancer and anti-inflammatory activity.
View Article and Find Full Text PDFThe most adverse outcome of increasing industrialization is contamination of the ecosystem with heavy metals. Toxic heavy metals possess a deleterious effect on all forms of biota; however, they affect the microbial system directly. These heavy metals form complexes with the microbial system by forming covalent and ionic bonds and affecting them at the cellular level and biochemical and molecular levels, ultimately leading to mutation affecting the microbial population.
View Article and Find Full Text PDFA multi-disciplinary cooperative for nanoparticle-enhanced radiotherapy (NERT) has been formed to review the current status of the field and identify key stages towards translation. Supported by the Colorectal Cancer Healthcare Technologies Cooperative, the cooperative comprises a diverse cohort of key contributors along the translation pathway including academics of physics, cancer and radio-biology, chemistry, nanotechnology and clinical trials, clinicians, manufacturers, industry, standards laboratories, policy makers and patients. Our aim was to leverage our combined expertise to devise solutions towards a roadmap for translation and commercialisation of NERT, in order to focus research in the direction of clinical implementation, and streamline the critical pathway from basic science to the clinic.
View Article and Find Full Text PDFIntracranial aneurysm is a leading cause of stroke. Its treatment has evolved over the past 2 decades. This review summarizes the treatment strategies for intracranial aneurysms from 3 different perspectives: open surgery approach, transluminal treatment approach, and new technologies being used or trialed.
View Article and Find Full Text PDFIn this study, we investigated gold nanoparticle (AuNP) interactions in blood using thromboelastography as a rapid screening tool to monitor their influence on blood coagulation. 1.2 nM colloidal AuNPs ranging from 12 to 85 nm have no effect in the blood, however, 5 nM AuNPs demonstrate pro-thrombogenic concentration dependent effects with a reduction in clot formation.
View Article and Find Full Text PDFImproving patency rates of current cardiovascular implants remains a major challenge. It is widely accepted that regeneration of a healthy endothelium layer on biomaterials could yield the perfect blood-contacting surface. Earlier efforts in pre-seeding endothelial cells in vitro demonstrated success in enhancing patency, but translation to the clinic is largely hampered due to its impracticality.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2015
Background: To date, there are no small internal diameter (<5mm) vascular grafts that are FDA approved for clinical use due to high failure rates from thrombosis and unwanted cell proliferation. The ideal conditions to enhance bioengineered grafts would be the blood contacting lumen of the bypass graft fully covered by endothelial cells (ECs). As a strategy towards this aim, we hypothesized that by immobilising biomolecules on the surface of the polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs.
View Article and Find Full Text PDFThis review article aims to provide an overview of chemically modified graphene, and graphene oxide (GO), and their impact on toxicology when present in biological systems. Graphene is one of the most promising nanomaterials due to unique physicochemical properties including enhanced optical, thermal, and electrically conductive behavior in addition to mechanical strength and high surface-to-volume ratio. Graphene-based nanomaterials have received much attention over the last 5 years in the biomedical field ranging from their use as polymeric conduits for nerve regeneration, carriers for targeted drug delivery and in the treatment of cancer via photo-thermal therapy.
View Article and Find Full Text PDFAn unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization.
View Article and Find Full Text PDFCardiovascular implants must resist thrombosis and intimal hyperplasia, but they are prone to such patency limiting conditions during graft implantation and prior to endothelialisation. Nitric oxide (NO) released from the endothelium has a complex protective role in the cardiovascular system, and this study has addressed: (1) in situ NO release profiles from S-nitrosothiols ((S-Nitroso-N-acetylpenicillamine (SNAP) and (S-Nitrosoglutathione (GSNO)) incorporated into polyhedral oligomeric silsesquioxanepoly(carbonate-urea)urethane (POSS-PCU) coronary artery bypass grafts (CABG) in a physiological pulsatile flow, and (2) the determination of their interaction with endothelial progenitor cells (EPCs), smooth muscle cells, platelets, whole blood kinetics. It was found that 1, 2, and 3 wt% SNAP/GSNO incorporated into POSS-PCU-CABG successfully eluted NO, but optimal elution was evident with 2 %-SNAP-POSS-PCU.
View Article and Find Full Text PDFEndovascular stents have revolutionised the field of interventional cardiology. Despite their excellent clinical outcome complications associated with percutaneous stent implantation following the procedure have remained a major drawback in their widespread use. To overcome such limitations, a number of novel endovascular stents have emerged including a covered stent wrapped in a thin membrane sleeve.
View Article and Find Full Text PDFIn an era of increased cardiovascular disease burden in the ageing population, there is great demand for devices that come in to contact with the blood such as heart valves, stents, and bypass grafts that offer life saving treatments. Nitric oxide (NO) elution from healthy endothelial tissue that lines the vessels maintains haemostasis throughout the vasculature. Surgical devices that release NO are desirable treatment options and N-diazeniumdiolates and S-nitrosothiols are recognized as preferred donor molecules.
View Article and Find Full Text PDFCardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility.
View Article and Find Full Text PDFJ Biomed Mater Res A
September 2012
Cardiovascular implants must resist infection and thrombosis. A nanocomposite polymeric material [polyhedral-oligomeric-silsesquioxane-poly(carbonate-urea)urethane; POSS-PCU] demonstrates ideal properties for cardiovascular applications. Silver nanoparticles or nanosilver (NS) are recognized for efficient antibacterial properties.
View Article and Find Full Text PDFThere is a significant worldwide demand for a small calibre vascular graft for use as a bypass or replacement conduit. An important feature in determining the success of a graft is the wall structure, which includes porosity, pore size and pore interconnectivity, as these play a crucial role in determining the long-term patency of a bypass graft. In this study we fabricate a small diameter (<5mm) vascular graft from polyhedral oligomeric silsesquioxane-poly(carbonate urea)urethane (POSS-PCU) via an extrusion, phase inversion method using an automated, custom built machine.
View Article and Find Full Text PDFIn this study, central composite design (CCD) was used to develop predictive models to optimize operating conditions of plasma surface modification. It was concluded that out of the two process variables, power and duration of plasma exposure, the latter was significantly affecting the surface energy (γ(s) ), chemistry, and topography of polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) films. On the basis of experimental data, CCD was used to model the γ(s) using a quadratic modeling of the process variables to achieve optimum surface energy to improve the interaction between endothelial cells (ECs).
View Article and Find Full Text PDFMacromol Rapid Commun
July 2011
Ground-breaking advances in nanomedicine (defined as the application of nanotechnology in medicine) have proposed novel therapeutics and diagnostics, which can potentially revolutionize current medical practice. Polyhedral oligomeric silsesquioxane (POSS) with a distinctive nanocage structure consisting of an inner inorganic framework of silicon and oxygen atoms, and an outer shell of organic functional groups is one of the most promising nanomaterials for medical applications. Enhanced biocompatibility and physicochemical (material bulk and surface) properties have resulted in the development of a wide range of nanocomposite POSS copolymers for biomedical applications, such as the development of biomedical devices, tissue engineering scaffolds, drug delivery systems, dental applications, and biological sensors.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Multi-wall carbon nanotube (MWCNT)/polymer composites are hybrid materials that combine numerous mechanical, electrical and chemical properties and thus, constitute ideal biomaterials for a wide range of regenerative medicine applications. Although, complete dispersion of MWCNT in a polymer matrix has rarely been achieved, in this study we have studied the dispersibility of MWCNT in POSS-PCU, a novel polymer based on polyprolactone and polycarbonate polyurethane (PCU) with an incorporated polyhedral oligomeric silsesquioxane (POSS). Furthermore, we developed a computational model that can visualise MWCNTs in order to predict the range of dispersibility and provide a 3-D mathematical model that can predict the chemical concentration for ideal nanocomposites.
View Article and Find Full Text PDFWe have studied the dynamic interaction of surfactants with carbon surfaces by using a series of Fmoc- (N-(fluorenyl-9-methoxycarbonyl)) terminated amino acid derivatives (Fmoc-X, where X is glycine, tyrosine, phenylalanine, tryptophan, or histidine) as a model system. In these systems, highly conjugated fluorenyl groups and aromatic amino acid side chains interact with the carbon surface, while carboxylate groups provide an overall negative charge. Ideal carbon surfaces were selected which possessed either predominantly macroscale (graphite) or nanoscale features (multiwalled carbon nanotube (MWNT) mats).
View Article and Find Full Text PDF