Although chimeric antigen receptor (CAR) T cells have emerged as highly effective treatments for patients with hematologic malignancies, similar efficacy has not been achieved in the context of solid tumors. There are several reasons for this disparity including a) fewer solid tumor target antigens, b) heterogenous target expression amongst tumor cells, c) poor trafficking of CAR T cells to the solid tumor and d) an immunosuppressive tumor microenvironment (TME). Oncolytic viruses have the potential to change this paradigm by a) directly lysing tumor cells and releasing tumor neoantigens, b) stimulating the local host innate immune response to release cytokines and recruit additional innate and adaptive immune cells, c) carrying virus-encoded transgenes to "re-program" the TME to a pro-inflammatory environment and d) promoting an adaptive immune response to the neoantigens in this newly permissive TME.
View Article and Find Full Text PDFJ Immunother Cancer
December 2021
Background: Treatment outcomes remain poor in recurrent platinum-resistant ovarian cancer. Enadenotucirev, a tumor-selective and blood stable adenoviral vector, has demonstrated a manageable safety profile in phase 1 studies in epithelial solid tumors.
Methods: We conducted a multicenter, open-label, phase 1 dose-escalation and dose-expansion study (OCTAVE) to assess enadenotucirev plus paclitaxel in patients with platinum-resistant epithelial ovarian cancer.
Ionising radiation causes cell death through the induction of DNA damage, particularly double-stranded DNA (dsDNA) breaks. Evidence suggests that adenoviruses inhibit proteins involved in the DNA damage response (DDR) to prevent recognition of double-stranded viral DNA genomes as cellular dsDNA breaks. We hypothesise that combining adenovirus treatment with radiotherapy has the potential for enhancing tumour-specific cytotoxicity through inhibition of the DDR and augmentation of virus production.
View Article and Find Full Text PDFOncolytic viruses represent an emerging approach to cancer therapy. However, better understanding of their interaction with the host cancer cell and approaches to enhance their efficacy are needed. Here, we investigate the effect of chemically induced endoplasmic reticulum (ER) stress on the activity of the chimeric group B adenovirus Enadenotucirev, its closely related parental virus Ad11p, and the archetypal group C oncolytic adenovirus Ad5.
View Article and Find Full Text PDFBackground: Tumour-associated macrophages (TAMs) are often implicated in cancer progression but can also exert anti-tumour activities. Selective eradication of cancer-promoting (M2-like) TAM subsets is a highly sought-after goal. Here, we have devised a novel strategy to achieve selective TAM depletion, involving the use of T cell engagers to direct endogenous T cell cytotoxicity towards specific M2-like TAMs.
View Article and Find Full Text PDFBackground: Enadenotucirev is a chimeric adenovirus with demonstrated preclinical tumor-selective cytotoxicity and a short half-life. Further clinical mechanism of action data showed that enadenotucirev can gain access to and replicate within different types of epithelial tumors. This phase 1 dose escalation study assessed intravenous (IV) dose escalation with enadenotucirev to establish the maximum tolerated dose (MTD) and subsequently identify a suitable schedule for repeated cycles.
View Article and Find Full Text PDF: Effective immunotherapy of stromal-rich tumors requires simultaneous targeting of cancer cells and immunosuppressive elements of the microenvironment. Here, we modified the oncolytic group B adenovirus enadenotucirev to express a stroma-targeted bispecific T-cell engager (BiTE). This BiTE bound fibroblast activation protein on cancer-associated fibroblasts (CAF) and CD3ε on T cells, leading to potent T-cell activation and fibroblast death.
View Article and Find Full Text PDFBackground: Oncolytic viruses are currently experiencing accelerated development in several laboratories worldwide, with some forty-seven clinical trials currently recruiting. Many oncolytic viruses combine targeted cytotoxicity to cancer cells with a proinflammatory cell lysis. Due to their additional potential to express immunomodulatory transgenes, they are also often known as oncolytic viral vaccines.
View Article and Find Full Text PDFBackground: Enadenotucirev (formerly ColoAd1) is a tumor-selective chimeric adenovirus with demonstrated preclinical activity. This phase 1 Mechanism of Action study assessed intravenous (IV) delivery of enadenotucirev in patients with resectable colorectal cancer (CRC), non-small-cell lung cancer (NSCLC), urothelial cell cancer (UCC), and renal cell cancer (RCC) with a comparator intratumoral (IT) dosed CRC patient cohort.
Methods: Seventeen patients scheduled for primary tumor resection were enrolled.
Oncolytic viruses which infect and kill tumour cells can also be genetically modified to express therapeutic genes that augment their anti-cancer activities. Modifying oncolytic viruses to produce effective cancer therapies is challenging as encoding transgenes often attenuates virus activity or prevents systemic delivery in patients due to the risk of off-target expression of transgenes in healthy tissues. To overcome these issues we aimed to generate a readily modifiable virus platform using the oncolytic adenovirus, enadenotucirev.
View Article and Find Full Text PDFEnadenotucirev is an oncolytic group B adenovirus identified by a process of bio-selection for the ability to selectively propagate in and rapidly kill carcinoma cells. It is resistant to inactivation by human blood components, potentially enabling intravenous dosing in patients with metastatic cancer. However, there are no known permissive animal models described for group B adenoviruses that could facilitate a conventional approach to preclinical safety studies.
View Article and Find Full Text PDFEnadenotucirev (EnAd) is a chimeric group B adenovirus isolated by bioselection from a library of adenovirus serotypes. It replicates selectively in and kills a diverse range of carcinoma cells, shows effective anticancer activity in preclinical systems, and is currently undergoing phase I/II clinical trials. EnAd kills cells more quickly than type 5 adenovirus, and speed of cytotoxicity is dose dependent.
View Article and Find Full Text PDFThe anti-human immunoglobulin E (IgE) monoclonal antibody, omalizumab (Xolair®, Genentech, South San Fransisco, CA), is effective in the treatment of poorly controlled moderate to severe allergic asthma and chronic idiopathic urticaria. It acts by specifically binding to the constant domain (Cϵ3) of free human IgE in the blood and interstitial fluid. Although efficacious, use of omalizumab is limited due to restrictions on patient weight and pre-existing IgE levels, and frequent dosing (q2-4 weeks).
View Article and Find Full Text PDFQb bacteriophage virus-like particles (Qb-VLP) are utilized as carriers to enhance immune responses to weakly or non-immunogenic antigens such as peptides and haptens. Qb-VLPs are formed through the self-assembly of multiple Qb capsid protein monomers, a process which traps a large amount of bacterial RNA in the core of the VLP. Bacterial RNA is known to activate the innate immune system via TLR 7 and 8 found within the endosomes of certain immune cells and has been shown to contribute to the immunogenicity of Qb-VLP vaccines.
View Article and Find Full Text PDFCD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules.
View Article and Find Full Text PDFThe Notch signaling pathway plays a key role in a myriad of cellular processes, including cell fate determination. Despite extensive study of the downstream consequences of receptor activation, very little molecular data are available for the initial binding event between the Notch receptor and its ligands. In this study, we have expressed and purified a natively folded wild-type epidermal growth factor-like domain (EGF) 11-14 construct from human Notch-1 and have used flow cytometry and surface plasmon resonance analysis to demonstrate a calcium-dependent interaction with the human ligand Delta-like-1.
View Article and Find Full Text PDFThe key interaction in the adaptive immune system's response to pathogenic challenge occurs at the interface between APCs and T cells. Families of costimulatory and coinhibitory molecules function in association with the cytokine microenvironment to orchestrate appropriate T cell activation programs. Recent data have demonstrated that the Notch receptor and its ligands also function at the APC:T interface.
View Article and Find Full Text PDFBackground: Notch plays a wide-ranging role in controlling cell fate, differentiation and development. The PI3K-Akt pathway is a similarly conserved signalling pathway which regulates processes such as differentiation, proliferation and survival. Mice with disrupted Notch and PI3K signalling show phenotypic similarities during haematopoietic cell development, suggesting functional interaction between these pathways.
View Article and Find Full Text PDFBasic helix-loop-helix (bHLH) transcription factors play a pivotal role in the regulation of tumorigenesis, and also in a wide range of other developmental processes in diverse species from yeast to humans. Here we demonstrate for the first time that Ret finger protein (RFP), a member of the TRIM family of proteins initially identified as a recombined transforming gene from a human lymphoma, is a novel interaction partner for four different bHLH proteins (SCL, E47, MyoD and mASH-1), but does not interact with GATA-1 or PU.1.
View Article and Find Full Text PDFUnder normal circumstances, the adaptive immune response to either self or harmless antigens is kept under tight control by a combination of deletion mechanisms in the central immune system, and by a system of regulatory cells in the periphery. Together, these control mechanisms enforce a state referred to as immunological tolerance. Breakdown of these mechanisms lead to a variety of immunological disease states involving persistent immune-mediated pathologies.
View Article and Find Full Text PDFSince its initial description as a neurogenic locus in Drosophila, the Notch pathway has been shown to play a central role in cell fate decisions across species, including vertebrates, guiding the differentiation of multiple cell types. In the immune system, its function was first demonstrated during lymphopoiesis, but in recent years this pathway has been shown to still be active in peripheral T-cells. Therapeutic opportunities that could arise from the manipulation of Notch signaling in immune disorders such as autoimmunity, allergy and in cancer immunotherapy and transplantation are discussed.
View Article and Find Full Text PDFNotch signaling plays a fundamental role in determining the outcome of differentiation processes in many tissues. Notch signaling has been implicated in T versus B cell lineage commitment, thymic differentiation, and bone marrow hematopoietic precursor renewal and differentiation. Notch receptors and their ligands are also expressed on the surface of mature lymphocytes and APCs, but the effects of Notch signaling in the peripheral immune system remain poorly defined.
View Article and Find Full Text PDFPeripheral T cell tolerance is critical in the regulation of immune responses to self antigens, and has implications in the control of autoimmunity, allergic responses and transplant rejection. Here we discuss recent and unpublished data demonstrating that ligation of the cell surface receptor Notch on T cells inhibits immune responses and results in the generation of a regulatory T cell population. Using animal models, we show that prior exposure to antigen can inhibit the response to challenge in an antigen-specific fashion.
View Article and Find Full Text PDFThe Notch signalling pathway plays a highly-conserved role in regulating the cellular differentiation and proliferation events that characterise pattern formation in the embryo. As cells in the embryo respond to environmental signals, similarly T-cells in the peripheral immune system must monitor their environment for antigens and respond accordingly by entering one of several potential differentiation pathways. Recent studies have identified a role for the Notch pathway in regulating the responses of T-cells in the periphery.
View Article and Find Full Text PDF