We describe the development of 'recCas9', an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences.
View Article and Find Full Text PDFThe ability to target DNA methylation toward a single, user-designated CpG site in vivo may have wide applicability for basic biological and biomedical research. A tool for targeting methylation toward single sites could be used to study the effects of individual methylation events on transcription, protein recruitment to DNA, and the dynamics of such epigenetic alterations. Although various tools for directing methylation to promoters exist, none offers the ability to localize methylation solely to a single CpG site.
View Article and Find Full Text PDFLittle is known about the effects of single DNA methylation events on gene transcription. The ability to direct the methylation toward a single unique site within a genome would have broad use as a tool to study the effects of specific epigenetic changes on transcription. A targeted enzyme might also be useful in a therapy for diseases with an epigenetic component or as a means to site-specifically label DNA.
View Article and Find Full Text PDF