Publications by authors named "Brian C Utter"

The role of fixed degrees of freedom in soft or granular matter systems has broad applicability and theoretical interest. Here we address questions of the geometrical role that a scaffolding of fixed particles plays in tuning the threshold volume fraction and force network in the vicinity of jamming. Our two-dimensional simulated system consists of soft particles and fixed "pins," both of which harmonically repel overlaps.

View Article and Find Full Text PDF

We present results from a planar shear experiment in which a two-dimensional horizontal granular assembly of pentagonal particles sheared between two parallel walls is subjected to external vibration. Particle tracking and photoelastic measurements are used to quantify both grain scale motion and interparticle stresses with and without imposed vibrations. We characterize the particle motion in planar shear and find that flow of these strongly interlocking particles consists of transient vortex motion with a mean flow given by the sum of exponential profiles imposed by the shearing walls.

View Article and Find Full Text PDF

We present statistics on granular avalanches in a rotating drum with and without imposed vertical vibration. The experiment consists of a quasi-two-dimensional, vertical drum containing pentagonal particles and rotated at a constant angular velocity. The drum rests on an electromagnetic shaker to allow vibration of the assembly as it rotates.

View Article and Find Full Text PDF