This work describes an analytical procedure, single particle-inductively coupled plasma-time-of-flight-mass spectrometry (SP-ICP-TOF-MS), that was developed to determine the platinum binding efficiency of protein-coated magnetic microparticles. SP-ICP-TOF-MS is advantageous due to its ability to quasi-simultaneously detect all nuclides (Li-Pu), allowing for both platinum and iron (composition of magnetic microparticles) to be measured concurrently. This method subsequently allows for the differentiation between bound and unbound platinum.
View Article and Find Full Text PDFCustomization of deuterated biomolecules is vital for many advanced biological experiments including neutron scattering. However, because it is challenging to control the proportion and regiospecificity of deuterium incorporation in live systems, often only two or three synthetic lipids are mixed together to form simplistic model membranes. This limits the applicability and biological accuracy of the results generated with these synthetic membranes.
View Article and Find Full Text PDFThe factors controlling lignin composition remain unclear. Catechyl (C)-lignin is a homopolymer of caffeyl alcohol with unique properties as a biomaterial and precursor of industrial chemicals. The lignin synthesized in the seed coat of switches from guaiacyl (G)- to C-lignin at around 12 to 14 days after pollination (DAP), associated with a rerouting of the monolignol pathway.
View Article and Find Full Text PDFBacteria and archaea possessing the hgcAB gene pair methylate inorganic mercury (Hg) to form highly toxic methylmercury. HgcA consists of a corrinoid binding domain and a transmembrane domain, and HgcB is a dicluster ferredoxin. However, their detailed structure and function have not been thoroughly characterized.
View Article and Find Full Text PDFHigh-potential iron-oxo species are intermediates in the catalytic cycles of oxygenase enzymes. They can cause heme degradation and irreversible oxidation of nearby amino acids. We have proposed that there are protective mechanisms in which hole hopping from oxidized hemes through tryptophan/tyrosine chains generates a surface-exposed amino-acid oxidant that could be rapidly disarmed by reaction with cellular reductants.
View Article and Find Full Text PDFThe reactivity of free NO (NO(+), NO(•), and NO(-)) with thiols (RSH) is relatively well understood, and the oxidation state of the NO moiety generally determines the outcome of the reaction. However, NO/RSH interactions are often mediated at metal centers, and the fate of these species when bound to a first-row transition metal (e.g.
View Article and Find Full Text PDFThe selective reduction of nitrite (NO2(-)) to nitric oxide (NO) is a fundamentally important chemical transformation related to environmental remediation of NOx and mammalian blood flow. We report the synthesis and characterization of two nonheme Fe complexes, [Fe(LN4(Im))(MeCN)2](BF4)2 (1(MeCN)) and [Fe(LN4(Im))(NO2)2] (2), geared toward understanding the NO2(-) to NO conversion. Complex 2 represents the first structurally characterized Fe(II) complex with two axial NO2(-) ligands that functions as a nitrite reduction catalyst.
View Article and Find Full Text PDFThe biochemical properties of nitroxyl (HNO/NO(-)) are distinct from nitric oxide (NO). Metal centers, particularly Fe, appear as suitable sites of HNO activity, both for generation and targeting. Furthermore, reduced Fe-NO(-)/Fe-HNO or {FeNO}(8) (Enemark-Feltham notation) species offer unique bonding profiles that are of fundamental importance.
View Article and Find Full Text PDFWe have investigated the reaction of Re(dmb)(CO)(3)COOH with CO(2) using density functional theory, and propose a mechanism for the production of CO. This mechanism supports the role of Re(dmb)(CO)(3)COOH as a key intermediate in the formation of CO. Our new experimental work supports the proposed scheme.
View Article and Find Full Text PDFAlthough metal-free cycloadditions of cyclooctynes and azides to give stable 1,2,3-triazoles have found wide utility in chemical biology and material sciences, there is an urgent need for faster and more versatile bioorthogonal reactions. We have found that nitrile oxides and diazocarbonyl derivatives undergo facile 1,3-dipolar cycloadditions with cyclooctynes. Cycloadditions with diazocarbonyl derivatives exhibited similar kinetics as compared to azides, whereas the reaction rates of cycloadditions with nitrile oxides were much faster.
View Article and Find Full Text PDF