Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6-phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non-lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT-labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased expression of anabolic enzymes and increased expression of catabolic enzymes involved in the metabolism of amino acids, with enhanced expression of mitochondrial respirasome proteins.
View Article and Find Full Text PDFAntifungal drug discovery and design is very challenging because of the considerable similarities in genetic features and metabolic pathways between fungi and humans. However, cell wall composition represents a notable point of divergence. Therefore, a research strategy was designed to improve our understanding of the mechanisms for maintaining fungal cell wall integrity, and to identify potential targets for new drugs that modulate the underlying protein-protein interactions in This study defines roles for and and their interacting protein partners in the cell wall integrity signaling and cell survival mechanisms that respond to treatments with fluconazole and hydrogen peroxide.
View Article and Find Full Text PDFWsc1p and Mid2p are transmembrane signaling proteins of cell wall stress in the budding yeast When an environmental stress compromises cell wall integrity, they activate a cell response through the Cell Wall Integrity (CWI) pathway. Studies have shown that the cytoplasmic domain of Wsc1p initiates the CWI signaling cascade by interacting with Rom2p, a Rho1-GDP-GTP exchange factor. Binding of Rom2p to the cytoplasmic tail of Wsc1p requires dephosphorylation of specific serine residues but the mechanism by which the sensor is dephosphorylated and how it subsequently interacts with Rom2p remains unclear.
View Article and Find Full Text PDFThe Rho GTPase Cdc42 is highly conserved in structure and function. Mechanical or chemical cues in the microenvironment stimulate the localized activation of Cdc42 to rearrange the actin cytoskeleton and establish cell polarity. A role for Cdc42 in cell polarization was first discovered in the budding yeast , and subsequently shown to also regulate directional motility in animal cells.
View Article and Find Full Text PDFNonmuscle myosin type II (Myo1p) is required for cytokinesis in the budding yeast Saccharomyces cerevisiae Loss of Myo1p activity has been associated with growth abnormalities and enhanced sensitivity to osmotic stress, making it an appealing antifungal therapeutic target. The Myo1p tail-only domain was previously reported to have functional activity equivalent to the full-length Myo1p whereas the head-only domain did not. Since Myo1p tail-only constructs are biologically active, the tail domain must have additional functions beyond its previously described role in myosin dimerization or trimerization.
View Article and Find Full Text PDFThe Prp43 DExD/H-box protein is required for progression of the biochemically distinct pre-messenger RNA and ribosomal RNA (rRNA) maturation pathways. In Saccharomyces cerevisiae, the Spp382/Ntr1, Sqs1/Pfa1, and Pxr1/Gno1 proteins are implicated as cofactors necessary for Prp43 helicase activation during spliceosome dissociation (Spp382) and rRNA processing (Sqs1 and Pxr1). While otherwise dissimilar in primary sequence, these Prp43-binding proteins each contain a short glycine-rich G-patch motif required for function and thought to act in protein or nucleic acid recognition.
View Article and Find Full Text PDFAdv Exp Med Biol
February 2011
The Saccharomyces cerevisiae branchpoint binding protein (BBP) is a 53 kDa pre-mRNA processing factor with characteristic STAR/GSG protein organization. This includes a central RNA binding site composed of an extended Type I KH domain with an adjacent QUA2 motif. Downstream of KH-QUA2 are two CCHC-type zinc knuckles and a proline-rich C-terminal interaction domain (Fig.
View Article and Find Full Text PDFPrp43p catalyzes essential steps in pre-mRNA splicing and rRNA biogenesis. In splicing, Spp382p stimulates the Prp43p helicase to dissociate the postcatalytic spliceosome and, in some way, to maintain the integrity of the spliceosome assembly. Here we present a dosage interference assay to identify Spp382p-interacting factors by screening for genes that when overexpressed specifically inhibit the growth of a conditional lethal prp38-1 spliceosome assembly mutant in the spp382-1 suppressor background.
View Article and Find Full Text PDFThe 3' end of mammalian introns is marked by the branchpoint binding protein, SF1, and the U2AF65-U2AF35 heterodimer bound at an adjacent sequence. Baker's yeast has equivalent proteins, branchpoint binding protein (BBP) (SF1) and Mud2p (U2AF65), but lacks an obvious U2AF35 homolog, leaving open the question of whether another protein substitutes during spliceosome assembly. Gel filtration, affinity selection and mass spectrometry were used to show that rather than a U2AF65/U2AF35-like heterodimer, Mud2p forms a complex with BBP without a third (U2AF35-like) factor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2006
Defects in assembly are suggested to signal the dissociation of faulty splicing complexes. A yeast genetic screen was performed to identify components of the putative discard pathway. Weak mutant alleles of SPP382 (also called NTR1) were found to suppress defects in two proteins required for spliceosome activation, Prp38p and Prp8p.
View Article and Find Full Text PDFThe U2 snRNP promotes prespliceosome assembly through interactions that minimally involve the branchpoint binding protein, Mud2p, and the pre-mRNA. We previously showed that seven proteins copurify with the yeast (Saccharomyces cerevisiae) SF3b U2 subcomplex that associates with the pre-mRNA branchpoint region: Rse1p, Hsh155p, Hsh49p, Cus1p, and Rds3p and unidentified subunits p10 and p17. Here proteomic and genetic studies identify Rcp10p as p10 and show that it contributes to SF3b stability and is necessary for normal cellular Cus1p accumulation and for U2 snRNP recruitment in splicing.
View Article and Find Full Text PDFBiochim Biophys Acta
October 2004
The 26S proteasome degrades denatured proteins and other proteins targeted for destruction by covalent modification. Here we show that impaired proteasome function influences the transcription of numerous yeast genes. Of 6144 genes present on the macroarray filters used in this study, approximately 5% showed measurable mRNA decreases and 2% showed mRNA increases following 30 min of proteasome inhibition.
View Article and Find Full Text PDFMol Cell Biol
October 2003
Rds3p is a well-conserved 12-kDa protein with five CxxC zinc fingers that has been implicated in the activation of certain drug transport genes and in the pre-mRNA splicing pathway. Here we show that Rds3p resides in the yeast spliceosome and is essential for splicing in vitro. Rds3p purified from yeast stably associates with at least five U2 snRNP proteins, Cus1p, Hsh49p, Hsh155p, Rse1p, and Ist3p/Snu17p, and with the Yra1p RNA export factor.
View Article and Find Full Text PDFClf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information.
View Article and Find Full Text PDFSpliceosome assembly follows a well conserved pathway of subunit addition that includes both small nuclear ribonucleoprotein (snRNP) particles and non-snRNP splicing factors. Clf1p is an unusual splicing factor composed almost entirely of direct repeats of the tetratricopeptide repeat (TPR) protein-binding motif. Here we show that the Clf1p protein resides in at least two multisubunit protein complexes, a small nuclear RNA-free structure similar to what was reported as the Prp19p complex (nineteen complex; NTC) and an RNP structure that contains the U2, U5, and U6 small nuclear RNAs.
View Article and Find Full Text PDFThe Drosophila crooked neck (crn) gene is essential for embryogenesis and has been implicated in cell cycle progression and in pre-mRNA splicing although a direct role in either process has not been established. Here we report isolation of the human crooked neck homolog, HCRN, and provide evidence for its function in splicing. HCRN encodes an unusual protein composed largely of tetratricopeptide repeat (TPR) elements.
View Article and Find Full Text PDF